Create model.py
Browse files- RealESRGAN/model.py +93 -0
RealESRGAN/model.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
from huggingface_hub import hf_hub_url, hf_hub_download, cached_download
|
8 |
+
|
9 |
+
from .rrdbnet_arch import RRDBNet
|
10 |
+
from .utils import pad_reflect, split_image_into_overlapping_patches, stich_together, \
|
11 |
+
unpad_image
|
12 |
+
|
13 |
+
HF_MODELS = {
|
14 |
+
2: dict(
|
15 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
16 |
+
filename='RealESRGAN_x2.pth',
|
17 |
+
),
|
18 |
+
4: dict(
|
19 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
20 |
+
filename='RealESRGAN_x4.pth',
|
21 |
+
),
|
22 |
+
8: dict(
|
23 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
24 |
+
filename='RealESRGAN_x8.pth',
|
25 |
+
),
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class RealESRGAN:
|
30 |
+
def __init__(self, device, scale=4):
|
31 |
+
self.device = device
|
32 |
+
self.scale = scale
|
33 |
+
self.model = RRDBNet(
|
34 |
+
num_in_ch=3, num_out_ch=3, num_feat=64,
|
35 |
+
num_block=23, num_grow_ch=32, scale=scale
|
36 |
+
)
|
37 |
+
|
38 |
+
def load_weights(self, model_path, download=True):
|
39 |
+
if not os.path.exists(model_path) and download:
|
40 |
+
assert self.scale in [2, 4, 8], 'You can download models only with scales: 2, 4, 8'
|
41 |
+
config = HF_MODELS[self.scale]
|
42 |
+
cache_dir = os.path.dirname(model_path)
|
43 |
+
local_filename = os.path.basename(model_path)
|
44 |
+
config_file_url = hf_hub_url(repo_id=config['repo_id'], filename=config['filename'])
|
45 |
+
htr = hf_hub_download(repo_id=config['repo_id'], cache_dir=cache_dir, local_dir=cache_dir,
|
46 |
+
filename=config['filename'])
|
47 |
+
print(htr)
|
48 |
+
# cached_download(config_file_url, cache_dir=cache_dir, force_filename=local_filename)
|
49 |
+
print('Weights downloaded to:', os.path.join(cache_dir, local_filename))
|
50 |
+
|
51 |
+
loadnet = torch.load(model_path)
|
52 |
+
if 'params' in loadnet:
|
53 |
+
self.model.load_state_dict(loadnet['params'], strict=True)
|
54 |
+
elif 'params_ema' in loadnet:
|
55 |
+
self.model.load_state_dict(loadnet['params_ema'], strict=True)
|
56 |
+
else:
|
57 |
+
self.model.load_state_dict(loadnet, strict=True)
|
58 |
+
self.model.eval()
|
59 |
+
self.model.to(self.device)
|
60 |
+
|
61 |
+
# @torch.cuda.amp.autocast()
|
62 |
+
def predict(self, lr_image, batch_size=4, patches_size=192,
|
63 |
+
padding=24, pad_size=15):
|
64 |
+
torch.autocast(device_type=self.device.type)
|
65 |
+
scale = self.scale
|
66 |
+
device = self.device
|
67 |
+
lr_image = np.array(lr_image)
|
68 |
+
lr_image = pad_reflect(lr_image, pad_size)
|
69 |
+
|
70 |
+
patches, p_shape = split_image_into_overlapping_patches(
|
71 |
+
lr_image, patch_size=patches_size, padding_size=padding
|
72 |
+
)
|
73 |
+
img = torch.FloatTensor(patches / 255).permute((0, 3, 1, 2)).to(device).detach()
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
res = self.model(img[0:batch_size])
|
77 |
+
for i in range(batch_size, img.shape[0], batch_size):
|
78 |
+
res = torch.cat((res, self.model(img[i:i + batch_size])), 0)
|
79 |
+
|
80 |
+
sr_image = res.permute((0, 2, 3, 1)).cpu().clamp_(0, 1)
|
81 |
+
np_sr_image = sr_image.numpy()
|
82 |
+
|
83 |
+
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
|
84 |
+
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
|
85 |
+
np_sr_image = stich_together(
|
86 |
+
np_sr_image, padded_image_shape=padded_size_scaled,
|
87 |
+
target_shape=scaled_image_shape, padding_size=padding * scale
|
88 |
+
)
|
89 |
+
sr_img = (np_sr_image * 255).astype(np.uint8)
|
90 |
+
sr_img = unpad_image(sr_img, pad_size * scale)
|
91 |
+
sr_img = Image.fromarray(sr_img)
|
92 |
+
|
93 |
+
return sr_img
|