import gradio as gr import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler from safetensors.torch import load_file model_id = "runwayml/stable-diffusion-v1-5" lora_path = "https://huggingface.co/codermert/model_malika/resolve/main/sarah-lora.safetensors" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") # LoRA dosyasını yükle state_dict = load_file(lora_path) pipe.unet.load_attn_procs(state_dict) def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps): image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps ).images[0] return image iface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt"), gr.Textbox(label="Negative Prompt"), gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7.5), gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=50) ], outputs=gr.Image(label="Generated Image"), title="Stable Diffusion with LoRA", description="Generate images using Stable Diffusion v1.5 with a custom LoRA model." ) iface.launch()