import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("codermert/zehra_flux", torch_dtype=dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) images = [] for _ in range(num_images): image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] images.append(image) # Her görsel için farklı seed kullan seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) return images, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css = """ #col-container { margin: 0 auto; max-width: 900px; } .generated-images { display: grid; grid-template-columns: repeat(2, 1fr); gap: 10px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("""# Zehra Flux Image Generator 4 farklı görsel üreten AI görsel oluşturucu """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Görseliniz için prompt girin", container=False, ) run_button = gr.Button("Oluştur", scale=0) # 4 görsel için grid layout with gr.Row(elem_classes="generated-images"): results = [gr.Image(label=f"Sonuç {i+1}", show_label=True) for i in range(4)] with gr.Accordion("Gelişmiş Ayarlar", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Rastgele seed", value=True) with gr.Row(): width = gr.Slider( label="Genişlik", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Yükseklik", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) num_inference_steps = gr.Slider( label="Inference adım sayısı", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[*results, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], outputs=[*results, seed] ) demo.launch()