File size: 1,449 Bytes
aae768a
 
 
 
 
 
fee56a4
aae768a
fee56a4
aae768a
 
 
 
fee56a4
 
 
 
2df0535
fee56a4
bdd8e37
fee56a4
 
 
 
 
 
 
 
aae768a
 
 
 
 
 
 
 
fee56a4
aae768a
 
fee56a4
aae768a
 
fee56a4
aae768a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#Hello! It seems like you want to import the Streamlit library in Python. Streamlit is a powerful open-source framework used for building web applications with interactive data visualizations and machine learning models. To import Streamlit, you'll need to ensure that you have it installed in your Python environment.
#Once you have Streamlit installed, you can import it into your Python script using the import statement,

import streamlit as st


from langchain.chat_models import ChatOpenAI

from langchain.schema import (AIMessage,HumanMessage,SystemMessage)


#App UI starts here
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
st.header("GetRoastedGPT")

if "sessionMessages" not in st.session_state:
    st.session_state.sessionMessages = [
        SystemMessage(content= "You are an assistant which roasts every user input")
    ]
chat= ChatOpenAI()
def load_answer(question):

    st.session_state.sessionMessages.append(HumanMessage(content=question))

    AIans= chat(st.session_state.sessionMessages)
    st.session_state.sessionMessages.append(AIMessage(content=AIans.content))

    return AIans.content

#Gets the user input
def get_text():
    input_text = st.text_input("You: ", key="input")
    return input_text


user_input=get_text()
submit = st.button('Roast me')  
#If generate button is clicked
if submit:
    response= load_answer(user_input)
    st.subheader("Answer:")

    st.write(response,key=1)