File size: 3,301 Bytes
ded9852
 
 
 
 
 
 
 
 
e75d574
450d71c
37ae4f3
51a4776
 
5dcb962
ded9852
 
 
109eb1a
 
9926668
137fd43
 
b157748
e7e1eaf
e75d574
709fd3c
 
e75d574
5086b19
d84731a
d4740d1
 
bf86791
 
 
 
6aea108
ded9852
 
 
af244db
 
6bdaae4
709fd3c
 
 
ded9852
 
 
 
 
 
 
 
 
 
 
 
e7e1eaf
ded9852
 
7390b66
ded9852
1e01e69
ded9852
d84731a
 
 
62744f4
ded9852
18d9300
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import sys
import gradio as gr
from PIL import Image

## environment settup
os.system("git clone https://github.com/codeslake/RefVSR.git")
os.chdir("RefVSR")
os.system("./install/install_cudnn113.sh")


os.mkdir("ckpt")
os.system("wget https://huggingface.co/spaces/codeslake/RefVSR/resolve/main/RefVSR_small_MFID_8K.pytorch -O ckpt/RefVSR_small_MFID_8K.pytorch")
os.system("wget https://huggingface.co/spaces/codeslake/RefVSR/resolve/main/SPyNet.pytorch -O ckpt/SPyNet.pytorch")

sys.path.append("RefVSR")

## RefVSR
LR_path = "test/RealMCVSR/test/HR/UW/0000"
Ref_path = "test/RealMCVSR/test/HR/W/0000"
Ref_path_T = "test/RealMCVSR/test/HR/T/0000"
os.makedirs(LR_path)
os.makedirs(Ref_path)
os.makedirs(Ref_path_T)
os.makedirs('result')

os.system("wget https://www.dropbox.com/s/xv6inxwy0so4ni0/LR.png -O LR.png")
os.system("wget https://www.dropbox.com/s/abydd1oczs1163l/Ref.png -O Ref.png")

def resize(img):
    max_side = 512
    w = img.size[0]
    h = img.size[1]
    if max(h, w) > max_side:
        scale_ratio = max_side / max(h, w)
        wsize=int(w*scale_ratio)
        hsize=int(h*scale_ratio)
        img = img.resize((wsize,hsize), Image.ANTIALIAS)
    return img
  
def inference(LR, Ref):
    #LR = resize(LR)
    #Ref = resize(Ref)

    LR.save(os.path.join(LR_path, '0000.png'))
    Ref.save(os.path.join(Ref_path, '0000.png'))
    Ref.save(os.path.join(Ref_path_T, '0000.png'))

    os.system("python -B run.py \
                --mode amp_RefVSR_small_MFID_8K \
                --config config_RefVSR_small_MFID_8K \
                --data RealMCVSR \
                --ckpt_abs_name ckpt/RefVSR_small_MFID_8K.pytorch \
                --data_offset ./test \
                --output_offset ./result \
                --qualitative_only \
                --cpu \
                --is_gradio")

    return "result/0000.png"

title="RefVSR"
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively."

article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is the small-sized model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The sample frames are in HD resolution (1920x1080) and in the PNG format. </p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"

LR = resize(Image.open('LR.png')).save('LR.png')
Ref = resize(Image.open('Ref.png')).save('Ref.png')

examples=[['LR.png', 'Ref.png']]

gr.Interface(inference,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)