Update app.py
Browse files
app.py
CHANGED
@@ -85,17 +85,17 @@ def inference(LR, Ref):
|
|
85 |
title="RefVSR | 4xVSR"
|
86 |
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 150s."
|
87 |
|
88 |
-
article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity.<br>Hence, the model <b>will not take advantage</b> of temporal LR and Ref frames.</p><p style='text-align: center'>Moreover, the model is trained <b>only with the proposed pre-training strategy</b> to cope with downsampled sample frames, which are in the 480x270 resolution.</p><p style='text-align: center'>For user given frames, the size will be adjusted for the longer side to have 480 pixels.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
89 |
|
90 |
## resize for sample
|
91 |
LR = resize(Image.open('LR.png')).save('LR.png')
|
92 |
Ref = resize(Image.open('Ref.png')).save('Ref.png')
|
93 |
|
94 |
## input
|
95 |
-
examples=[['LR.png', 'Ref.png']]
|
96 |
|
97 |
## interface
|
98 |
-
gr.Interface(inference,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
|
99 |
|
100 |
#################### 8K ##################
|
101 |
## inference
|
|
|
85 |
title="RefVSR | 4xVSR"
|
86 |
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 150s."
|
87 |
|
88 |
+
article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity.<br>Hence, the model <b>will not take advantage</b> of temporal LR and Ref frames.</p><p style='text-align: center'>Moreover, the model is trained <b>only with the proposed pre-training strategy</b> to cope with downsampled sample frames, which are in the 480x270 resolution.</p><p style='text-align: center'>For user given frames, the size will be adjusted for the longer side of the frames to have 480 pixels.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
89 |
|
90 |
## resize for sample
|
91 |
LR = resize(Image.open('LR.png')).save('LR.png')
|
92 |
Ref = resize(Image.open('Ref.png')).save('Ref.png')
|
93 |
|
94 |
## input
|
95 |
+
examples=[['LR.png', "LR"], ['Ref.png', "Ref"]]
|
96 |
|
97 |
## interface
|
98 |
+
gr.Interface(inference,[["LR", gr.inputs.Image(type="pil")], ["Ref (recommended to have 2x resolution of LR)", gr.inputs.Image(type="pil")]], ["Output (4x)", gr.outputs.Image(type="file")],title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
|
99 |
|
100 |
#################### 8K ##################
|
101 |
## inference
|