Update app.py
Browse files
app.py
CHANGED
@@ -63,10 +63,10 @@ def inference(LR, Ref):
|
|
63 |
|
64 |
## Run RefVSR model
|
65 |
os.system("python -B run.py \
|
66 |
-
--mode
|
67 |
--config config_RefVSR_small_MFID \
|
68 |
--data RealMCVSR \
|
69 |
-
--ckpt_abs_name ckpt/
|
70 |
--data_offset ./test \
|
71 |
--output_offset ./result \
|
72 |
--qualitative_only \
|
@@ -75,9 +75,9 @@ def inference(LR, Ref):
|
|
75 |
return "result/0000.png"
|
76 |
|
77 |
title="RefVSR (under construction)"
|
78 |
-
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about
|
79 |
|
80 |
-
article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is trained proposed
|
81 |
|
82 |
## resize for sample (not used)
|
83 |
#LR = resize(Image.open('LR.png')).save('LR.png')
|
|
|
63 |
|
64 |
## Run RefVSR model
|
65 |
os.system("python -B run.py \
|
66 |
+
--mode amp_RefVSR_small_MFID \
|
67 |
--config config_RefVSR_small_MFID \
|
68 |
--data RealMCVSR \
|
69 |
+
--ckpt_abs_name ckpt/RefVSR_small_MFID.pytorch \
|
70 |
--data_offset ./test \
|
71 |
--output_offset ./result \
|
72 |
--qualitative_only \
|
|
|
75 |
return "result/0000.png"
|
76 |
|
77 |
title="RefVSR (under construction)"
|
78 |
+
description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 120s."
|
79 |
|
80 |
+
article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is trained by the proposed pre-stage training strategy only. The sample frames are in 430x270 resolution and saved in the PNG format. </p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
81 |
|
82 |
## resize for sample (not used)
|
83 |
#LR = resize(Image.open('LR.png')).save('LR.png')
|