File size: 12,304 Bytes
c4aca3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272



def validate_dataset(self, file_path, format_type):
    """

    Validate and analyze the dataset format, providing detailed feedback



    Parameters:

    file_path (str): Path to the dataset file

    format_type (str): File format (csv, jsonl, text)



    Returns:

    dict: Validation results including format, structure, and statistics

    """
    import pandas as pd
    import json
    import os
    import re

    validation_results = {
        "is_valid": False,
        "format": format_type,
        "detected_structure": None,
        "statistics": {},
        "issues": [],
        "recommendations": []
    }

    try:
        # Check if file exists
        if not os.path.exists(file_path):
            validation_results["issues"].append(f"File not found: {file_path}")
            return validation_results

        # Check file size
        file_size = os.path.getsize(file_path)
        validation_results["statistics"]["file_size_bytes"] = file_size
        validation_results["statistics"]["file_size_mb"] = round(file_size / (1024 * 1024), 2)

        if file_size == 0:
            validation_results["issues"].append("File is empty")
            return validation_results

        if format_type == "csv":
            # Load CSV file
            try:
                df = pd.read_csv(file_path)
                validation_results["statistics"]["total_rows"] = len(df)
                validation_results["statistics"]["total_columns"] = len(df.columns)
                validation_results["statistics"]["column_names"] = list(df.columns)

                # Check for null values
                null_counts = df.isnull().sum().to_dict()
                validation_results["statistics"]["null_counts"] = null_counts

                if validation_results["statistics"]["total_rows"] == 0:
                    validation_results["issues"].append("CSV file has no rows")
                    return validation_results

                # Detect structure
                if "instruction" in df.columns and "response" in df.columns:
                    validation_results["detected_structure"] = "instruction-response"
                    validation_results["is_valid"] = True
                elif "input" in df.columns and "output" in df.columns:
                    validation_results["detected_structure"] = "input-output"
                    validation_results["is_valid"] = True
                elif "prompt" in df.columns and "completion" in df.columns:
                    validation_results["detected_structure"] = "prompt-completion"
                    validation_results["is_valid"] = True
                elif "text" in df.columns:
                    validation_results["detected_structure"] = "text-only"
                    validation_results["is_valid"] = True
                else:
                    # Look for text columns
                    text_columns = [col for col in df.columns if df[col].dtype == 'object']
                    if text_columns:
                        validation_results["detected_structure"] = "custom"
                        validation_results["statistics"]["potential_text_columns"] = text_columns
                        validation_results["is_valid"] = True
                        validation_results["recommendations"].append(
                            f"Consider renaming columns to match standard formats: instruction/response, input/output, prompt/completion, or text"
                        )
                    else:
                        validation_results["issues"].append("No suitable text columns found in CSV")

                # Check for short text
                if validation_results["detected_structure"] == "instruction-response":
                    short_instructions = (df["instruction"].str.len() < 10).sum()
                    short_responses = (df["response"].str.len() < 10).sum()
                    validation_results["statistics"]["short_instructions"] = short_instructions
                    validation_results["statistics"]["short_responses"] = short_responses

                    if short_instructions > 0:
                        validation_results["issues"].append(f"Found {short_instructions} instructions shorter than 10 characters")
                    if short_responses > 0:
                        validation_results["issues"].append(f"Found {short_responses} responses shorter than 10 characters")

            except Exception as e:
                validation_results["issues"].append(f"Error parsing CSV: {str(e)}")
                return validation_results

        elif format_type == "jsonl":
            try:
                # Load JSONL file
                data = []
                with open(file_path, 'r', encoding='utf-8') as f:
                    for line_num, line in enumerate(f, 1):
                        line = line.strip()
                        if not line:
                            continue
                        try:
                            json_obj = json.loads(line)
                            data.append(json_obj)
                        except json.JSONDecodeError:
                            validation_results["issues"].append(f"Invalid JSON at line {line_num}")

                validation_results["statistics"]["total_examples"] = len(data)

                if len(data) == 0:
                    validation_results["issues"].append("No valid JSON objects found in file")
                    return validation_results

                # Get sample of keys from first object
                if data:
                    validation_results["statistics"]["sample_keys"] = list(data[0].keys())

                # Detect structure
                structures = []
                for item in data:
                    if "instruction" in item and "response" in item:
                        structures.append("instruction-response")
                    elif "input" in item and "output" in item:
                        structures.append("input-output")
                    elif "prompt" in item and "completion" in item:
                        structures.append("prompt-completion")
                    elif "text" in item:
                        structures.append("text-only")
                    else:
                        structures.append("custom")

                # Count structure types
                from collections import Counter
                structure_counts = Counter(structures)
                validation_results["statistics"]["structure_counts"] = structure_counts

                # Set detected structure to most common
                if structures:
                    most_common = structure_counts.most_common(1)[0][0]
                    validation_results["detected_structure"] = most_common
                    validation_results["is_valid"] = True

                    # Check if mixed
                    if len(structure_counts) > 1:
                        validation_results["issues"].append(f"Mixed structures detected: {dict(structure_counts)}")
                        validation_results["recommendations"].append("Consider standardizing all records to the same structure")

            except Exception as e:
                validation_results["issues"].append(f"Error parsing JSONL: {str(e)}")
                return validation_results

        elif format_type == "text":
            try:
                # Read text file
                with open(file_path, 'r', encoding='utf-8') as f:
                    content = f.read()

                # Get basic stats
                total_chars = len(content)
                total_words = len(content.split())
                total_lines = content.count('\n') + 1

                validation_results["statistics"]["total_characters"] = total_chars
                validation_results["statistics"]["total_words"] = total_words
                validation_results["statistics"]["total_lines"] = total_lines

                # Check if it's a single large document or multiple examples
                paragraphs = [p.strip() for p in content.split('\n\n') if p.strip()]
                validation_results["statistics"]["total_paragraphs"] = len(paragraphs)

                # Try to detect structure
                # Look for common patterns like "Q: ... A: ...", "Input: ... Output: ..."
                has_qa_pattern = re.search(r"Q:.*?A:", content, re.DOTALL) is not None
                has_input_output = re.search(r"Input:.*?Output:", content, re.DOTALL) is not None
                has_prompt_completion = re.search(r"Prompt:.*?Completion:", content, re.DOTALL) is not None

                if has_qa_pattern:
                    validation_results["detected_structure"] = "Q&A-format"
                elif has_input_output:
                    validation_results["detected_structure"] = "input-output-format"
                elif has_prompt_completion:
                    validation_results["detected_structure"] = "prompt-completion-format"
                elif len(paragraphs) > 1:
                    validation_results["detected_structure"] = "paragraphs"
                else:
                    validation_results["detected_structure"] = "continuous-text"

                validation_results["is_valid"] = True

                if validation_results["detected_structure"] == "continuous-text" and total_chars < 1000:
                    validation_results["issues"].append("Text file is very short for fine-tuning")
                    validation_results["recommendations"].append("Consider adding more content or examples")

            except Exception as e:
                validation_results["issues"].append(f"Error parsing text file: {str(e)}")
                return validation_results
        else:
            validation_results["issues"].append(f"Unsupported file format: {format_type}")
            return validation_results

        # General recommendations
        if validation_results["is_valid"]:
            if not validation_results["issues"]:
                validation_results["recommendations"].append("Dataset looks good and ready for fine-tuning!")
            else:
                validation_results["recommendations"].append("Address the issues above before proceeding with fine-tuning")

        return validation_results

    except Exception as e:
        validation_results["issues"].append(f"Unexpected error: {str(e)}")
        return validation_results

def generate_dataset_report(validation_results):
    """

    Generate a user-friendly report from validation results



    Parameters:

    validation_results (dict): Results from validate_dataset



    Returns:

    str: Formatted report

    """
    report = []

    # Add header
    report.append("# Dataset Validation Report")
    report.append("")

    # Add validation status
    if validation_results["is_valid"]:
        report.append("✅ Dataset is valid and can be used for fine-tuning")
    else:
        report.append("❌ Dataset has issues that need to be addressed")
    report.append("")

    # Add format info
    report.append(f"**File Format:** {validation_results['format']}")
    report.append(f"**Detected Structure:** {validation_results['detected_structure']}")
    report.append("")

    # Add statistics
    report.append("## Statistics")
    for key, value in validation_results["statistics"].items():
        # Format the key for better readability
        formatted_key = key.replace("_", " ").title()
        report.append(f"- {formatted_key}: {value}")
    report.append("")

    # Add issues
    if validation_results["issues"]:
        report.append("## Issues")
        for issue in validation_results["issues"]:
            report.append(f"- ⚠️ {issue}")
        report.append("")

    # Add recommendations
    if validation_results["recommendations"]:
        report.append("## Recommendations")
        for recommendation in validation_results["recommendations"]:
            report.append(f"- 💡 {recommendation}")

    return "\n".join(report)