Spaces:
Runtime error
Runtime error
""" | |
2025.3.13 | |
2025.3.15 | |
4.48.3 | |
0.15.2 | |
__UNSLOTH_VERSIONING__ | |
""" | |
from torch import Tensor | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from trl.trainer.gkd_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, Callable, DataCollator, DataCollatorForChatML, Dataset, EvalPrediction, F, FeatureExtractionMixin, GKDConfig, GKDTrainer, GenerationConfig, Optional, PeftConfig, PreTrainedModel, PreTrainedModelWrapper, PreTrainedTokenizerBase, ProcessorMixin, SFTTrainer, TrainerCallback, Union, deepcopy, disable_dropout_in_model, empty_cache, generate_model_card, get_comet_experiment_url, is_wandb_available, nn, os, random, textwrap, torch, unwrap_model_for_generation, wandb) | |
import os | |
from typing import * | |
from dataclasses import dataclass, field | |
from packaging.version import Version | |
import torch | |
import numpy as np | |
from contextlib import nullcontext | |
from torch.nn import functional as F | |
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
torch_compile_options = { | |
"epilogue_fusion" : True, | |
"max_autotune" : False, | |
"shape_padding" : True, | |
"trace.enabled" : False, | |
"triton.cudagraphs" : False, | |
} | |
def selective_log_softmax(logits, index): | |
logits = logits.to(torch.float32) | |
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) | |
# loop to reduce peak mem consumption | |
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) | |
logsumexp_values = torch.logsumexp(logits, dim = -1) | |
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) | |
return per_token_logps | |
class UnslothGKDConfig(GKDConfig): | |
""" | |
Configuration class for [`GKDTrainer`]. | |
Args: | |
temperature (`float`, *optional*, defaults to `0.9`): | |
Temperature for sampling. The higher the temperature, the more random the completions. | |
lmbda (`float`, *optional*, defaults to `0.5`): | |
Lambda parameter that controls the student data fraction (i.e., the proportion of on-policy | |
student-generated outputs). | |
beta (`float`, *optional*, defaults to `0.5`): | |
Interpolation coefficient between `0.0` and `1.0` of the Generalized Jensen-Shannon Divergence loss. When | |
beta is `0.0`, the loss is the KL divergence. When beta is `1.0`, the loss is the Inverse KL Divergence. | |
max_new_tokens (`int`, *optional*, defaults to `128`): | |
Maximum number of tokens to generate per completion. | |
teacher_model_name_or_path (`str` or `None`, *optional*, defaults to `None`): | |
Model name or path of the teacher model. If `None`, the teacher model will be the same as the model | |
being trained. | |
teacher_model_init_kwargs (`dict[str, Any]]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the teacher model | |
from a string. | |
disable_dropout (`bool`, *optional*, defaults to `True`): | |
Whether to disable dropout in the model. | |
seq_kd (`bool`, *optional*, defaults to `False`): | |
Seq_kd parameter that controls whether to perform Sequence-Level KD (can be viewed as supervised FT | |
on teacher-generated output). | |
""" | |
vllm_sampling_params: Optional[Any] = field( | |
default = None, | |
metadata = {'help': 'vLLM SamplingParams'}, | |
) | |
unsloth_num_chunks : Optional[int] = field( | |
default = -1, | |
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
) | |
def __init__( | |
self, | |
output_dir = None, | |
overwrite_output_dir = None, | |
do_train = False, | |
do_eval = False, | |
do_predict = False, | |
eval_strategy = 'no', | |
prediction_loss_only = False, | |
per_device_train_batch_size = 4, | |
per_device_eval_batch_size = 4, | |
per_gpu_train_batch_size = None, | |
per_gpu_eval_batch_size = None, | |
gradient_accumulation_steps = 2, | |
eval_accumulation_steps = 2, | |
eval_delay = 0, | |
torch_empty_cache_steps = 250, | |
learning_rate = 5e-05, | |
weight_decay = 0.01, | |
adam_beta1 = 0.9, | |
adam_beta2 = 0.999, | |
adam_epsilon = 1e-08, | |
max_grad_norm = 1.0, | |
num_train_epochs = 3.0, | |
max_steps = -1, | |
lr_scheduler_type = 'linear', | |
warmup_ratio = 0.1, | |
warmup_steps = 0, | |
log_level = 'passive', | |
log_level_replica = 'warning', | |
log_on_each_node = True, | |
logging_dir = None, | |
logging_strategy = 'steps', | |
logging_first_step = False, | |
logging_steps = 1, | |
logging_nan_inf_filter = False, | |
save_strategy = 'steps', | |
save_steps = 500, | |
save_total_limit = None, | |
save_safetensors = True, | |
save_on_each_node = False, | |
save_only_model = False, | |
restore_callback_states_from_checkpoint = False, | |
no_cuda = False, | |
use_cpu = False, | |
use_mps_device = False, | |
seed = 3407, | |
data_seed = 3407, | |
jit_mode_eval = False, | |
use_ipex = False, | |
bf16 = False, | |
fp16 = False, | |
fp16_opt_level = 'O1', | |
half_precision_backend = 'auto', | |
bf16_full_eval = False, | |
fp16_full_eval = False, | |
tf32 = None, | |
local_rank = -1, | |
ddp_backend = None, | |
tpu_num_cores = None, | |
tpu_metrics_debug = False, | |
debug = '', | |
dataloader_drop_last = False, | |
eval_steps = None, | |
dataloader_num_workers = 0, | |
dataloader_prefetch_factor = None, | |
past_index = -1, | |
run_name = None, | |
disable_tqdm = None, | |
remove_unused_columns = True, | |
label_names = None, | |
load_best_model_at_end = False, | |
metric_for_best_model = None, | |
greater_is_better = None, | |
ignore_data_skip = False, | |
fsdp = '', | |
fsdp_min_num_params = 0, | |
fsdp_config = None, | |
fsdp_transformer_layer_cls_to_wrap = None, | |
accelerator_config = None, | |
deepspeed = None, | |
label_smoothing_factor = 0.0, | |
optim = 'adamw_8bit', | |
optim_args = None, | |
adafactor = False, | |
group_by_length = False, | |
length_column_name = 'length', | |
report_to = None, | |
ddp_find_unused_parameters = None, | |
ddp_bucket_cap_mb = None, | |
ddp_broadcast_buffers = None, | |
dataloader_pin_memory = True, | |
dataloader_persistent_workers = False, | |
skip_memory_metrics = True, | |
use_legacy_prediction_loop = False, | |
push_to_hub = False, | |
resume_from_checkpoint = None, | |
hub_model_id = None, | |
hub_strategy = 'every_save', | |
hub_token = None, | |
hub_private_repo = None, | |
hub_always_push = False, | |
gradient_checkpointing = False, | |
gradient_checkpointing_kwargs = None, | |
include_inputs_for_metrics = False, | |
eval_do_concat_batches = True, | |
fp16_backend = 'auto', | |
evaluation_strategy = None, | |
push_to_hub_model_id = None, | |
push_to_hub_organization = None, | |
push_to_hub_token = None, | |
mp_parameters = '', | |
auto_find_batch_size = False, | |
full_determinism = False, | |
torchdynamo = None, | |
ray_scope = 'last', | |
ddp_timeout = 1800, | |
torch_compile = False, | |
torch_compile_backend = None, | |
torch_compile_mode = None, | |
dispatch_batches = None, | |
split_batches = None, | |
include_tokens_per_second = False, | |
include_num_input_tokens_seen = False, | |
neftune_noise_alpha = None, | |
optim_target_modules = None, | |
batch_eval_metrics = False, | |
eval_on_start = False, | |
use_liger_kernel = False, | |
eval_use_gather_object = False, | |
average_tokens_across_devices = False, | |
model_init_kwargs = None, | |
use_liger = False, | |
dataset_text_field = 'text', | |
dataset_kwargs = None, | |
dataset_num_proc = None, | |
max_seq_length = None, | |
packing = False, | |
eval_packing = None, | |
dataset_batch_size = None, | |
num_of_sequences = None, | |
chars_per_token = None, | |
temperature = 0.9, | |
lmbda = 0.5, | |
beta = 0.5, | |
max_new_tokens = 128, | |
teacher_model_name_or_path = None, | |
teacher_model_init_kwargs = None, | |
disable_dropout = True, | |
seq_kd = False, | |
vllm_sampling_params = None, | |
unsloth_num_chunks = -1, | |
**kwargs, | |
): | |
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
output_dir = 'unsloth_training_checkpoints' | |
save_strategy = 'no' | |
if dataset_num_proc is None: | |
from multiprocessing import cpu_count | |
dataset_num_proc = cpu_count() | |
super().__init__( | |
output_dir = output_dir, | |
overwrite_output_dir = overwrite_output_dir, | |
do_train = do_train, | |
do_eval = do_eval, | |
do_predict = do_predict, | |
eval_strategy = eval_strategy, | |
prediction_loss_only = prediction_loss_only, | |
per_device_train_batch_size = per_device_train_batch_size, | |
per_device_eval_batch_size = per_device_eval_batch_size, | |
per_gpu_train_batch_size = per_gpu_train_batch_size, | |
per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
gradient_accumulation_steps = gradient_accumulation_steps, | |
eval_accumulation_steps = eval_accumulation_steps, | |
eval_delay = eval_delay, | |
torch_empty_cache_steps = torch_empty_cache_steps, | |
learning_rate = learning_rate, | |
weight_decay = weight_decay, | |
adam_beta1 = adam_beta1, | |
adam_beta2 = adam_beta2, | |
adam_epsilon = adam_epsilon, | |
max_grad_norm = max_grad_norm, | |
num_train_epochs = num_train_epochs, | |
max_steps = max_steps, | |
lr_scheduler_type = lr_scheduler_type, | |
warmup_ratio = warmup_ratio, | |
warmup_steps = warmup_steps, | |
log_level = log_level, | |
log_level_replica = log_level_replica, | |
log_on_each_node = log_on_each_node, | |
logging_dir = logging_dir, | |
logging_strategy = logging_strategy, | |
logging_first_step = logging_first_step, | |
logging_steps = logging_steps, | |
logging_nan_inf_filter = logging_nan_inf_filter, | |
save_strategy = save_strategy, | |
save_steps = save_steps, | |
save_total_limit = save_total_limit, | |
save_safetensors = save_safetensors, | |
save_on_each_node = save_on_each_node, | |
save_only_model = save_only_model, | |
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
no_cuda = no_cuda, | |
use_cpu = use_cpu, | |
use_mps_device = use_mps_device, | |
seed = seed, | |
data_seed = data_seed, | |
jit_mode_eval = jit_mode_eval, | |
use_ipex = use_ipex, | |
bf16 = bf16, | |
fp16 = fp16, | |
fp16_opt_level = fp16_opt_level, | |
half_precision_backend = half_precision_backend, | |
bf16_full_eval = bf16_full_eval, | |
fp16_full_eval = fp16_full_eval, | |
tf32 = tf32, | |
local_rank = local_rank, | |
ddp_backend = ddp_backend, | |
tpu_num_cores = tpu_num_cores, | |
tpu_metrics_debug = tpu_metrics_debug, | |
debug = debug, | |
dataloader_drop_last = dataloader_drop_last, | |
eval_steps = eval_steps, | |
dataloader_num_workers = dataloader_num_workers, | |
dataloader_prefetch_factor = dataloader_prefetch_factor, | |
past_index = past_index, | |
run_name = run_name, | |
disable_tqdm = disable_tqdm, | |
remove_unused_columns = remove_unused_columns, | |
label_names = label_names, | |
load_best_model_at_end = load_best_model_at_end, | |
metric_for_best_model = metric_for_best_model, | |
greater_is_better = greater_is_better, | |
ignore_data_skip = ignore_data_skip, | |
fsdp = fsdp, | |
fsdp_min_num_params = fsdp_min_num_params, | |
fsdp_config = fsdp_config, | |
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
accelerator_config = accelerator_config, | |
deepspeed = deepspeed, | |
label_smoothing_factor = label_smoothing_factor, | |
optim = optim, | |
optim_args = optim_args, | |
adafactor = adafactor, | |
group_by_length = group_by_length, | |
length_column_name = length_column_name, | |
report_to = report_to, | |
ddp_find_unused_parameters = ddp_find_unused_parameters, | |
ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
ddp_broadcast_buffers = ddp_broadcast_buffers, | |
dataloader_pin_memory = dataloader_pin_memory, | |
dataloader_persistent_workers = dataloader_persistent_workers, | |
skip_memory_metrics = skip_memory_metrics, | |
use_legacy_prediction_loop = use_legacy_prediction_loop, | |
push_to_hub = push_to_hub, | |
resume_from_checkpoint = resume_from_checkpoint, | |
hub_model_id = hub_model_id, | |
hub_strategy = hub_strategy, | |
hub_token = hub_token, | |
hub_private_repo = hub_private_repo, | |
hub_always_push = hub_always_push, | |
gradient_checkpointing = gradient_checkpointing, | |
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
include_inputs_for_metrics = include_inputs_for_metrics, | |
eval_do_concat_batches = eval_do_concat_batches, | |
fp16_backend = fp16_backend, | |
evaluation_strategy = evaluation_strategy, | |
push_to_hub_model_id = push_to_hub_model_id, | |
push_to_hub_organization = push_to_hub_organization, | |
push_to_hub_token = push_to_hub_token, | |
mp_parameters = mp_parameters, | |
auto_find_batch_size = auto_find_batch_size, | |
full_determinism = full_determinism, | |
torchdynamo = torchdynamo, | |
ray_scope = ray_scope, | |
ddp_timeout = ddp_timeout, | |
torch_compile = torch_compile, | |
torch_compile_backend = torch_compile_backend, | |
torch_compile_mode = torch_compile_mode, | |
dispatch_batches = dispatch_batches, | |
split_batches = split_batches, | |
include_tokens_per_second = include_tokens_per_second, | |
include_num_input_tokens_seen = include_num_input_tokens_seen, | |
neftune_noise_alpha = neftune_noise_alpha, | |
optim_target_modules = optim_target_modules, | |
batch_eval_metrics = batch_eval_metrics, | |
eval_on_start = eval_on_start, | |
use_liger_kernel = use_liger_kernel, | |
eval_use_gather_object = eval_use_gather_object, | |
average_tokens_across_devices = average_tokens_across_devices, | |
model_init_kwargs = model_init_kwargs, | |
use_liger = use_liger, | |
dataset_text_field = dataset_text_field, | |
dataset_kwargs = dataset_kwargs, | |
dataset_num_proc = dataset_num_proc, | |
max_seq_length = max_seq_length, | |
packing = packing, | |
eval_packing = eval_packing, | |
dataset_batch_size = dataset_batch_size, | |
num_of_sequences = num_of_sequences, | |
chars_per_token = chars_per_token, | |
temperature = temperature, | |
lmbda = lmbda, | |
beta = beta, | |
max_new_tokens = max_new_tokens, | |
teacher_model_name_or_path = teacher_model_name_or_path, | |
teacher_model_init_kwargs = teacher_model_init_kwargs, | |
disable_dropout = disable_dropout, | |
seq_kd = seq_kd,**kwargs) | |
self.vllm_sampling_params = vllm_sampling_params | |
self.unsloth_num_chunks = unsloth_num_chunks | |
pass | |
class _UnslothGKDTrainer(SFTTrainer): | |
_tag_names = ["trl", "gkd"] | |
def __init__( | |
self, | |
model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, | |
teacher_model: Union[PreTrainedModel, nn.Module, str] = None, | |
args: Optional[GKDConfig] = None, | |
data_collator: Optional[DataCollator] = None, # type: ignore | |
train_dataset: Optional[Dataset] = None, | |
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
processing_class: Optional[ | |
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
] = None, | |
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, | |
callbacks: Optional[list[TrainerCallback]] = None, | |
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
peft_config: Optional["PeftConfig"] = None, | |
formatting_func: Optional[Callable] = None, | |
): | |
# add remove_unused_columns=False to the dataclass args | |
args.remove_unused_columns = False | |
data_collator = DataCollatorForChatML(tokenizer=processing_class, max_length=args.max_seq_length) | |
super().__init__( | |
model, | |
args=args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
processing_class=processing_class, | |
compute_metrics=compute_metrics, | |
callbacks=callbacks, | |
optimizers=optimizers, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
peft_config=peft_config, | |
formatting_func=formatting_func, | |
) | |
if args.teacher_model_init_kwargs is None: | |
teacher_model_init_kwargs = {} | |
elif not isinstance(teacher_model, str): | |
raise ValueError( | |
"You passed teacher_model_init_kwargs to the GKDConfig, but your teacher_model is already instantiated." | |
) | |
else: | |
teacher_model_init_kwargs = args.teacher_model_init_kwargs | |
teacher_model_init_kwargs["torch_dtype"] = ( | |
teacher_model_init_kwargs["torch_dtype"] | |
if teacher_model_init_kwargs["torch_dtype"] in ["auto", None] | |
else getattr(torch, teacher_model_init_kwargs["torch_dtype"]) | |
) | |
if isinstance(teacher_model, str): | |
if args.use_liger: | |
teacher_model = AutoLigerKernelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs) | |
else: | |
teacher_model = AutoModelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs) | |
# Disable dropout in the model | |
if args.disable_dropout: | |
disable_dropout_in_model(self.model) | |
if self.is_deepspeed_enabled: | |
self.teacher_model = self._prepare_deepspeed(teacher_model) | |
else: | |
self.teacher_model = self.accelerator.prepare_model(teacher_model, evaluation_mode=True) | |
self.lmbda = args.lmbda | |
self.beta = args.beta | |
self.temperature = args.temperature | |
self.seq_kd = args.seq_kd | |
self.generation_config = GenerationConfig( | |
max_new_tokens=args.max_new_tokens, | |
temperature=args.temperature, | |
do_sample=True, | |
top_k=0, | |
use_cache=False if args.gradient_checkpointing else True, | |
pad_token_id=self.processing_class.pad_token_id, | |
) | |
# Set custom EOS tokens if they are specified by the model's generation | |
# config. This is important for models with the Llama 3 chat template, | |
# which use special tokens <|eot_id|> and <|eom_id|> to mark the end of | |
# turns or messages. | |
if ( | |
hasattr(self.model.generation_config, "eos_token_id") | |
and self.model.generation_config.eos_token_id is not None | |
): | |
self.generation_config.eos_token_id = self.model.generation_config.eos_token_id | |
def _prepare_dataset(self, dataset, *args): | |
# SFTTrainer._prepare_dataset() applies the chat template and rename the messages column to text. However, we | |
# need to keep the messages column as it is. We use the following workaround to keep the messages column. | |
dataset = dataset.add_column("_messages", dataset["messages"]) | |
dataset = super()._prepare_dataset(dataset, *args) | |
dataset = dataset.rename_column("_messages", "messages") | |
return dataset | |
def generalized_jsd_loss( | |
student_logits, teacher_logits, labels=None, beta=0.5, temperature=1.0, reduction="batchmean" | |
): | |
""" | |
Compute the generalized Jensen-Shannon Divergence loss for knowledge distillation using F.kl_div. See Eq. (1) | |
of https://huggingface.co/papers/2306.13649 for the definition. | |
Args: | |
student_logits: Tensor of shape (batch_size, sequence_length, vocab_size) | |
teacher_logits: Tensor of shape (batch_size, sequence_length, vocab_size) | |
labels: Tensor of shape (batch_size, sequence_length) with -100 for padding tokens to ignore when computing loss | |
beta: Interpolation coefficient between 0 and 1 (default: 0.5) | |
temperature: Softmax temperature (default: 1.0) | |
reduction: Specifies the reduction to apply to the output (default: 'batchmean') | |
Returns: | |
loss: Scalar tensor with the generalized JSD loss | |
""" | |
# Apply temperature scaling | |
student_logits = student_logits / temperature | |
teacher_logits = teacher_logits / temperature | |
# Compute log probabilities for student and probabilities for teacher | |
student_log_probs = F.log_softmax(student_logits, dim=-1) | |
teacher_log_probs = F.log_softmax(teacher_logits, dim=-1) | |
# Compute the log of the mixture distribution | |
# log(a + b) = log(exp(log(a)) + exp(log(b))) -> for mixture | |
beta = torch.tensor(beta, dtype=student_log_probs.dtype) | |
mixture_log_probs = torch.logsumexp( | |
torch.stack([student_log_probs + torch.log(beta), teacher_log_probs + torch.log(1 - beta)]), | |
dim=0, | |
) | |
# Compute KL divergences using F.kl_div | |
# PyTorch differs from the standard mathematical definition, so the order of the probability distributions is swapped compared to that defined in the paper. | |
kl_teacher = F.kl_div(mixture_log_probs, teacher_log_probs, reduction="none", log_target=True) | |
kl_student = F.kl_div(mixture_log_probs, student_log_probs, reduction="none", log_target=True) | |
# Compute the Generalized Jensen-Shannon Divergence | |
jsd = beta * kl_teacher + (1 - beta) * kl_student | |
# Masking | |
if labels is not None: | |
mask = labels != -100 | |
jsd = jsd[mask] | |
# Apply reduction | |
if reduction == "batchmean": | |
return jsd.sum() / mask.sum() if labels is not None else jsd.sum() / (jsd.size(0) * jsd.size(1)) | |
elif reduction == "sum": | |
return jsd.sum() | |
elif reduction == "mean": | |
return jsd.mean() | |
else: | |
return jsd | |
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None): | |
# compute student output | |
outputs_student = model( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
) | |
# compute teacher output in eval mode | |
self.teacher_model.eval() | |
with torch.no_grad(): | |
outputs_teacher = self.teacher_model( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
) | |
# slice the logits for the generated tokens using the inputs["prompts"] lengths | |
prompt_lengths = inputs["prompts"].shape[1] | |
shifted_student_logits = outputs_student.logits[:, prompt_lengths - 1 : -1, :] | |
shifted_teacher_logits = outputs_teacher.logits[:, prompt_lengths - 1 : -1, :] | |
shifted_labels = inputs["labels"][:, prompt_lengths:] | |
# compute loss | |
loss = self.generalized_jsd_loss( | |
student_logits=shifted_student_logits, | |
teacher_logits=shifted_teacher_logits, | |
labels=shifted_labels, | |
beta=self.beta, | |
) | |
# empty cache | |
empty_cache() | |
# Return loss | |
return (loss, outputs_student) if return_outputs else loss | |
def generate_on_policy_outputs(model, inputs, generation_config, pad_token_id=None): | |
# Generate output with respect to the prompt only | |
generated_outputs = model.generate( | |
input_ids=inputs["prompts"], | |
attention_mask=inputs.get("prompt_attention_mask", None), | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
) | |
# Get the generated token IDs | |
generated_tokens = generated_outputs.sequences | |
# Calculate new attention mask | |
new_attention_mask = torch.ones_like(generated_tokens) | |
new_labels = generated_tokens.clone() | |
# If there's pad_token_id, set attention mask to 0 for padding tokens | |
if pad_token_id is not None: | |
new_labels[new_labels == pad_token_id] = -100 | |
new_attention_mask[generated_tokens == pad_token_id] = 0 | |
return generated_tokens, new_attention_mask, new_labels | |
def training_step( | |
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None | |
) -> torch.Tensor: | |
""" | |
Perform a training step for the Generalized Knowledge Distillation (GKD) model. | |
This method implements the on-policy learning approach described in the GKD paper. | |
With probability `self.lmbda`, it generates new responses using the student model, | |
which are then used for training instead of the original inputs. | |
""" | |
if self.seq_kd: | |
with unwrap_model_for_generation(self.teacher_model, self.accelerator) as unwrapped_model: | |
new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs( | |
unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id | |
) | |
inputs["input_ids"] = new_input_ids | |
inputs["attention_mask"] = new_attention_mask | |
inputs["labels"] = new_labels | |
if random.random() <= self.lmbda: | |
with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model: | |
new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs( | |
unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id | |
) | |
inputs["input_ids"] = new_input_ids | |
inputs["attention_mask"] = new_attention_mask | |
inputs["labels"] = new_labels | |
loss = super().training_step(model, inputs, num_items_in_batch) | |
return loss | |
def _prepare_deepspeed(self, model: PreTrainedModelWrapper): | |
# Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473 | |
deepspeed_plugin = self.accelerator.state.deepspeed_plugin | |
config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config) | |
if model is not None: | |
if hasattr(model, "config"): | |
hidden_size = ( | |
max(model.config.hidden_sizes) | |
if getattr(model.config, "hidden_sizes", None) | |
else getattr(model.config, "hidden_size", None) | |
) | |
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3: | |
# Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0` | |
# This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081 | |
config_kwargs.update( | |
{ | |
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size, | |
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, | |
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size, | |
} | |
) | |
# If ZeRO-3 is used, we shard both the active and reference model. | |
# Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO disabled (stage 0) | |
if config_kwargs["zero_optimization"]["stage"] != 3: | |
config_kwargs["zero_optimization"]["stage"] = 0 | |
model, *_ = deepspeed.initialize(model=model, config=config_kwargs) | |
model.eval() | |
return model | |
def create_model_card( | |
self, | |
model_name: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
tags: Union[str, list[str], None] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
model_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the model. | |
dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the dataset used for training. | |
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
Tags to be associated with the model card. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
base_model = self.model.config._name_or_path | |
else: | |
base_model = None | |
tags = tags or [] | |
if isinstance(tags, str): | |
tags = [tags] | |
if hasattr(self.model.config, "unsloth_version"): | |
tags.append("unsloth") | |
citation = textwrap.dedent("""\ | |
@inproceedings{agarwal2024on-policy, | |
title = {{On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes}}, | |
author = {Rishabh Agarwal and Nino Vieillard and Yongchao Zhou and Piotr Stanczyk and Sabela Ramos Garea and Matthieu Geist and Olivier Bachem}, | |
year = 2024, | |
booktitle = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024}, | |
publisher = {OpenReview.net}, | |
url = {https://openreview.net/forum?id=3zKtaqxLhW}, | |
}""") | |
model_card = generate_model_card( | |
base_model=base_model, | |
model_name=model_name, | |
hub_model_id=self.hub_model_id, | |
dataset_name=dataset_name, | |
tags=tags, | |
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
comet_url=get_comet_experiment_url(), | |
trainer_name="GKD", | |
trainer_citation=citation, | |
paper_title="On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes", | |
paper_id="2306.13649", | |
) | |
model_card.save(os.path.join(self.args.output_dir, "README.md")) | |
class UnslothGKDTrainer(_UnslothGKDTrainer): | |
""" | |
""" | |
def __init__( | |
self, | |
model = None, | |
teacher_model = None, | |
args = None, | |
data_collator = None, | |
train_dataset = None, | |
eval_dataset = None, | |
processing_class = None, | |
compute_metrics = None, | |
callbacks = None, | |
preprocess_logits_for_metrics = None, | |
peft_config = None, | |
formatting_func = None, | |
**kwargs | |
): | |
if args is None: args = UnslothGKDConfig() | |
use_bf16 = getattr(args, 'bf16', False) | |
use_fp16 = getattr(args, 'fp16', False) | |
force_float32 = False | |
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': | |
print('Unsloth: Switching to float32 training since model cannot work with float16') | |
force_float32 = True | |
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
dtype = getattr(model.config, 'torch_dtype', None) | |
if dtype is None: dtype = model.get_input_embeddings().dtype | |
from unsloth_zoo.utils import _get_dtype | |
dtype = _get_dtype(dtype) | |
float16 = dtype == torch.float16 | |
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
if force_float32: | |
args.fp16 = False | |
args.bf16 = False | |
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
args.fp16 = float16 | |
args.bf16 = not float16 | |
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
args.eval_strategy = 'steps' | |
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
if ga_steps is not None and ga_steps > 1: | |
from transformers import __version__ as transformers_version | |
if Version(transformers_version) <= Version('4.45.2'): | |
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
if getattr(args, 'eval_strategy', 'no') != 'no': | |
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
if force_float32: | |
args.bf16_full_eval = False | |
args.fp16_full_eval = False | |
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
args.bf16_full_eval = True | |
args.fp16_full_eval = False | |
elif not bf16_full_eval and not fp16_full_eval: | |
args.bf16_full_eval = args.bf16 | |
args.fp16_full_eval = args.fp16 | |
_output_logits = False | |
if locals().get('compute_metrics', None) is not None: _output_logits = True | |
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
if _output_logits: | |
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
pass | |
else: | |
model_max_seq_length = getattr(model, 'max_seq_length', None) | |
args_max_seq_length = getattr(args, 'max_seq_length', None) | |
if args_max_seq_length is None and model_max_seq_length is not None: | |
max_seq_length = model.max_seq_length | |
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
if model is not None and hasattr(model, 'for_training'): | |
model.for_training() | |
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
if 'processing_class' in locals(): | |
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer | |
from unsloth_zoo.vision_utils import UnslothVisionDataCollator | |
if not isinstance(data_collator, UnslothVisionDataCollator): | |
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: | |
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) | |
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: | |
data_collator = DataCollatorForSeq2Seq(__tokenizer) | |
else: | |
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False | |
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' | |
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} | |
if not isinstance(data_collator, UnslothVisionDataCollator): | |
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): | |
if isinstance(data_collator, DataCollatorForSeq2Seq): | |
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) | |
else: | |
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) | |
other_metrics = [] | |
from unsloth_zoo.logging_utils import PatchRLStatistics | |
PatchRLStatistics('gkd_trainer', other_metrics) | |
super().__init__( | |
model = model, | |
teacher_model = teacher_model, | |
args = args, | |
data_collator = data_collator, | |
train_dataset = train_dataset, | |
eval_dataset = eval_dataset, | |
processing_class = processing_class, | |
compute_metrics = compute_metrics, | |
callbacks = callbacks, | |
preprocess_logits_for_metrics = preprocess_logits_for_metrics, | |
peft_config = peft_config, | |
formatting_func = formatting_func,**kwargs) | |
if hasattr(self, 'neftune_hook_handle'): | |
self.neftune_hook_handle.remove() | |
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
if getattr(args, 'neftune_noise_alpha', None) is not None: | |
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
pass | |
pass | |