Spaces:
Runtime error
Runtime error
""" | |
2025.3.13 | |
2025.3.15 | |
4.48.3 | |
0.15.2 | |
__UNSLOTH_VERSIONING__ | |
""" | |
from torch import Tensor | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from trl.trainer.kto_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalLoopOutput, F, FeatureExtractionMixin, KTOConfig, KTOTrainer, Literal, Optional, PartialState, PeftModel, PreTrainedModel, PreTrainedModelWrapper, PreTrainedTokenizerBase, ProcessorMixin, SequentialSampler, Trainer, TrainerCallback, TrainingArguments, Union, _get_kl_dataset, _process_tokens, _tokenize, amp, concatenate_datasets, contextmanager, create_reference_model, deepcopy, defaultdict, disable_dropout_in_model, generate_model_card, get_comet_experiment_url, has_length, inspect, is_comet_available, is_peft_available, is_wandb_available, itemgetter, log_table_to_comet_experiment, maybe_apply_chat_template, maybe_extract_prompt, maybe_unpair_preference_dataset, nn, np, nullcontext, os, pad_to_length, pd, peft_module_casting_to_bf16, prepare_model_for_kbit_training, random, textwrap, torch, tqdm, transformers, version, wandb, warnings) | |
import os | |
from typing import * | |
from dataclasses import dataclass, field | |
from packaging.version import Version | |
import torch | |
import numpy as np | |
from contextlib import nullcontext | |
from torch.nn import functional as F | |
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
torch_compile_options = { | |
"epilogue_fusion" : True, | |
"max_autotune" : False, | |
"shape_padding" : True, | |
"trace.enabled" : False, | |
"triton.cudagraphs" : False, | |
} | |
def selective_log_softmax(logits, index): | |
logits = logits.to(torch.float32) | |
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) | |
# loop to reduce peak mem consumption | |
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) | |
logsumexp_values = torch.logsumexp(logits, dim = -1) | |
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) | |
return per_token_logps | |
class UnslothKTOConfig(KTOConfig): | |
""" | |
Configuration class for the [`KTOTrainer`]. | |
Using [`~transformers.HfArgumentParser`] we can turn this class into | |
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
command line. | |
Parameters: | |
learning_rate (`float`, *optional*, defaults to `5e-7`): | |
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of | |
[`~transformers.TrainingArguments`]. | |
max_length (`int` or `None`, *optional*, defaults to `1024`): | |
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want | |
to use the default data collator. | |
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): | |
Maximum length of the prompt. This argument is required if you want to use the default data collator. | |
max_completion_length (`int` or `None`, *optional*, defaults to `None`): | |
Maximum length of the completion. This argument is required if you want to use the default data collator | |
and your model is an encoder-decoder. | |
beta (`float`, *optional*, defaults to `0.1`): | |
Parameter controlling the deviation from the reference model. Higher β means less deviation from the | |
reference model. | |
loss_type (`str`, *optional*, defaults to `"kto"`): | |
Type of loss to use. Possible values are: | |
- `"kto"`: KTO loss from the [KTO](https://huggingface.co/papers/2402.01306) paper. | |
- `"apo_zero_unpaired"`: Unpaired variant of APO-zero loss from the [APO](https://huggingface.co/papers/2408.06266) paper. | |
desirable_weight (`float`, *optional*, defaults to `1.0`): | |
Desirable losses are weighed by this factor to counter unequal number of desirable and undesirable paris. | |
undesirable_weight (`float`, *optional*, defaults to `1.0`): | |
Undesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs. | |
label_pad_token_id (`int`, *optional*, defaults to `-100`): | |
Label pad token id. This argument is required if you want to use the default data collator. | |
padding_value (`int` or `None`, *optional*, defaults to `None`): | |
Padding value to use. If `None`, the padding value of the tokenizer is used. | |
truncation_mode (`str`, *optional*, defaults to `"keep_end"`): | |
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`. | |
This argument is required if you want to use the default data collator. | |
generate_during_eval (`bool`, *optional*, defaults to `False`): | |
If `True`, generates and logs completions from both the model and the reference model to W&B or Comet during | |
evaluation. | |
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`): | |
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, | |
you need to specify if the model returned by the callable is an encoder-decoder model. | |
precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): | |
Whether to precompute reference model log probabilities for training and evaluation datasets. This is | |
useful when training without the reference model to reduce the total GPU memory needed. | |
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a | |
string. | |
ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model | |
from a string. | |
dataset_num_proc: (`int` or `None`, *optional*, defaults to `None`): | |
Number of processes to use for processing the dataset. | |
disable_dropout (`bool`, *optional*, defaults to `True`): | |
Whether to disable dropout in the model and reference model. | |
""" | |
vllm_sampling_params: Optional[Any] = field( | |
default = None, | |
metadata = {'help': 'vLLM SamplingParams'}, | |
) | |
unsloth_num_chunks : Optional[int] = field( | |
default = -1, | |
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
) | |
def __init__( | |
self, | |
output_dir = None, | |
overwrite_output_dir = None, | |
do_train = False, | |
do_eval = False, | |
do_predict = False, | |
eval_strategy = 'no', | |
prediction_loss_only = False, | |
per_device_train_batch_size = 4, | |
per_device_eval_batch_size = 4, | |
per_gpu_train_batch_size = None, | |
per_gpu_eval_batch_size = None, | |
gradient_accumulation_steps = 2, | |
eval_accumulation_steps = 2, | |
eval_delay = 0, | |
torch_empty_cache_steps = 250, | |
learning_rate = 5e-05, | |
weight_decay = 0.01, | |
adam_beta1 = 0.9, | |
adam_beta2 = 0.999, | |
adam_epsilon = 1e-08, | |
max_grad_norm = 1.0, | |
num_train_epochs = 3.0, | |
max_steps = -1, | |
lr_scheduler_type = 'linear', | |
warmup_ratio = 0.1, | |
warmup_steps = 0, | |
log_level = 'passive', | |
log_level_replica = 'warning', | |
log_on_each_node = True, | |
logging_dir = None, | |
logging_strategy = 'steps', | |
logging_first_step = False, | |
logging_steps = 1, | |
logging_nan_inf_filter = False, | |
save_strategy = 'steps', | |
save_steps = 500, | |
save_total_limit = None, | |
save_safetensors = True, | |
save_on_each_node = False, | |
save_only_model = False, | |
restore_callback_states_from_checkpoint = False, | |
no_cuda = False, | |
use_cpu = False, | |
use_mps_device = False, | |
seed = 3407, | |
data_seed = 3407, | |
jit_mode_eval = False, | |
use_ipex = False, | |
bf16 = False, | |
fp16 = False, | |
fp16_opt_level = 'O1', | |
half_precision_backend = 'auto', | |
bf16_full_eval = False, | |
fp16_full_eval = False, | |
tf32 = None, | |
local_rank = -1, | |
ddp_backend = None, | |
tpu_num_cores = None, | |
tpu_metrics_debug = False, | |
debug = '', | |
dataloader_drop_last = False, | |
eval_steps = None, | |
dataloader_num_workers = 0, | |
dataloader_prefetch_factor = None, | |
past_index = -1, | |
run_name = None, | |
disable_tqdm = None, | |
remove_unused_columns = True, | |
label_names = None, | |
load_best_model_at_end = False, | |
metric_for_best_model = None, | |
greater_is_better = None, | |
ignore_data_skip = False, | |
fsdp = '', | |
fsdp_min_num_params = 0, | |
fsdp_config = None, | |
fsdp_transformer_layer_cls_to_wrap = None, | |
accelerator_config = None, | |
deepspeed = None, | |
label_smoothing_factor = 0.0, | |
optim = 'adamw_8bit', | |
optim_args = None, | |
adafactor = False, | |
group_by_length = False, | |
length_column_name = 'length', | |
report_to = None, | |
ddp_find_unused_parameters = None, | |
ddp_bucket_cap_mb = None, | |
ddp_broadcast_buffers = None, | |
dataloader_pin_memory = True, | |
dataloader_persistent_workers = False, | |
skip_memory_metrics = True, | |
use_legacy_prediction_loop = False, | |
push_to_hub = False, | |
resume_from_checkpoint = None, | |
hub_model_id = None, | |
hub_strategy = 'every_save', | |
hub_token = None, | |
hub_private_repo = None, | |
hub_always_push = False, | |
gradient_checkpointing = False, | |
gradient_checkpointing_kwargs = None, | |
include_inputs_for_metrics = False, | |
eval_do_concat_batches = True, | |
fp16_backend = 'auto', | |
evaluation_strategy = None, | |
push_to_hub_model_id = None, | |
push_to_hub_organization = None, | |
push_to_hub_token = None, | |
mp_parameters = '', | |
auto_find_batch_size = False, | |
full_determinism = False, | |
torchdynamo = None, | |
ray_scope = 'last', | |
ddp_timeout = 1800, | |
torch_compile = False, | |
torch_compile_backend = None, | |
torch_compile_mode = None, | |
dispatch_batches = None, | |
split_batches = None, | |
include_tokens_per_second = False, | |
include_num_input_tokens_seen = False, | |
neftune_noise_alpha = None, | |
optim_target_modules = None, | |
batch_eval_metrics = False, | |
eval_on_start = False, | |
use_liger_kernel = False, | |
eval_use_gather_object = False, | |
average_tokens_across_devices = False, | |
max_length = 1024, | |
max_prompt_length = 512, | |
max_completion_length = None, | |
beta = 0.1, | |
loss_type = 'kto', | |
desirable_weight = 1.0, | |
undesirable_weight = 1.0, | |
label_pad_token_id = -100, | |
padding_value = None, | |
truncation_mode = 'keep_end', | |
generate_during_eval = False, | |
is_encoder_decoder = None, | |
disable_dropout = True, | |
precompute_ref_log_probs = False, | |
model_init_kwargs = None, | |
ref_model_init_kwargs = None, | |
dataset_num_proc = None, | |
vllm_sampling_params = None, | |
unsloth_num_chunks = -1, | |
**kwargs, | |
): | |
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
output_dir = 'unsloth_training_checkpoints' | |
save_strategy = 'no' | |
if dataset_num_proc is None: | |
from multiprocessing import cpu_count | |
dataset_num_proc = cpu_count() | |
super().__init__( | |
output_dir = output_dir, | |
overwrite_output_dir = overwrite_output_dir, | |
do_train = do_train, | |
do_eval = do_eval, | |
do_predict = do_predict, | |
eval_strategy = eval_strategy, | |
prediction_loss_only = prediction_loss_only, | |
per_device_train_batch_size = per_device_train_batch_size, | |
per_device_eval_batch_size = per_device_eval_batch_size, | |
per_gpu_train_batch_size = per_gpu_train_batch_size, | |
per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
gradient_accumulation_steps = gradient_accumulation_steps, | |
eval_accumulation_steps = eval_accumulation_steps, | |
eval_delay = eval_delay, | |
torch_empty_cache_steps = torch_empty_cache_steps, | |
learning_rate = learning_rate, | |
weight_decay = weight_decay, | |
adam_beta1 = adam_beta1, | |
adam_beta2 = adam_beta2, | |
adam_epsilon = adam_epsilon, | |
max_grad_norm = max_grad_norm, | |
num_train_epochs = num_train_epochs, | |
max_steps = max_steps, | |
lr_scheduler_type = lr_scheduler_type, | |
warmup_ratio = warmup_ratio, | |
warmup_steps = warmup_steps, | |
log_level = log_level, | |
log_level_replica = log_level_replica, | |
log_on_each_node = log_on_each_node, | |
logging_dir = logging_dir, | |
logging_strategy = logging_strategy, | |
logging_first_step = logging_first_step, | |
logging_steps = logging_steps, | |
logging_nan_inf_filter = logging_nan_inf_filter, | |
save_strategy = save_strategy, | |
save_steps = save_steps, | |
save_total_limit = save_total_limit, | |
save_safetensors = save_safetensors, | |
save_on_each_node = save_on_each_node, | |
save_only_model = save_only_model, | |
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
no_cuda = no_cuda, | |
use_cpu = use_cpu, | |
use_mps_device = use_mps_device, | |
seed = seed, | |
data_seed = data_seed, | |
jit_mode_eval = jit_mode_eval, | |
use_ipex = use_ipex, | |
bf16 = bf16, | |
fp16 = fp16, | |
fp16_opt_level = fp16_opt_level, | |
half_precision_backend = half_precision_backend, | |
bf16_full_eval = bf16_full_eval, | |
fp16_full_eval = fp16_full_eval, | |
tf32 = tf32, | |
local_rank = local_rank, | |
ddp_backend = ddp_backend, | |
tpu_num_cores = tpu_num_cores, | |
tpu_metrics_debug = tpu_metrics_debug, | |
debug = debug, | |
dataloader_drop_last = dataloader_drop_last, | |
eval_steps = eval_steps, | |
dataloader_num_workers = dataloader_num_workers, | |
dataloader_prefetch_factor = dataloader_prefetch_factor, | |
past_index = past_index, | |
run_name = run_name, | |
disable_tqdm = disable_tqdm, | |
remove_unused_columns = remove_unused_columns, | |
label_names = label_names, | |
load_best_model_at_end = load_best_model_at_end, | |
metric_for_best_model = metric_for_best_model, | |
greater_is_better = greater_is_better, | |
ignore_data_skip = ignore_data_skip, | |
fsdp = fsdp, | |
fsdp_min_num_params = fsdp_min_num_params, | |
fsdp_config = fsdp_config, | |
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
accelerator_config = accelerator_config, | |
deepspeed = deepspeed, | |
label_smoothing_factor = label_smoothing_factor, | |
optim = optim, | |
optim_args = optim_args, | |
adafactor = adafactor, | |
group_by_length = group_by_length, | |
length_column_name = length_column_name, | |
report_to = report_to, | |
ddp_find_unused_parameters = ddp_find_unused_parameters, | |
ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
ddp_broadcast_buffers = ddp_broadcast_buffers, | |
dataloader_pin_memory = dataloader_pin_memory, | |
dataloader_persistent_workers = dataloader_persistent_workers, | |
skip_memory_metrics = skip_memory_metrics, | |
use_legacy_prediction_loop = use_legacy_prediction_loop, | |
push_to_hub = push_to_hub, | |
resume_from_checkpoint = resume_from_checkpoint, | |
hub_model_id = hub_model_id, | |
hub_strategy = hub_strategy, | |
hub_token = hub_token, | |
hub_private_repo = hub_private_repo, | |
hub_always_push = hub_always_push, | |
gradient_checkpointing = gradient_checkpointing, | |
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
include_inputs_for_metrics = include_inputs_for_metrics, | |
eval_do_concat_batches = eval_do_concat_batches, | |
fp16_backend = fp16_backend, | |
evaluation_strategy = evaluation_strategy, | |
push_to_hub_model_id = push_to_hub_model_id, | |
push_to_hub_organization = push_to_hub_organization, | |
push_to_hub_token = push_to_hub_token, | |
mp_parameters = mp_parameters, | |
auto_find_batch_size = auto_find_batch_size, | |
full_determinism = full_determinism, | |
torchdynamo = torchdynamo, | |
ray_scope = ray_scope, | |
ddp_timeout = ddp_timeout, | |
torch_compile = torch_compile, | |
torch_compile_backend = torch_compile_backend, | |
torch_compile_mode = torch_compile_mode, | |
dispatch_batches = dispatch_batches, | |
split_batches = split_batches, | |
include_tokens_per_second = include_tokens_per_second, | |
include_num_input_tokens_seen = include_num_input_tokens_seen, | |
neftune_noise_alpha = neftune_noise_alpha, | |
optim_target_modules = optim_target_modules, | |
batch_eval_metrics = batch_eval_metrics, | |
eval_on_start = eval_on_start, | |
use_liger_kernel = use_liger_kernel, | |
eval_use_gather_object = eval_use_gather_object, | |
average_tokens_across_devices = average_tokens_across_devices, | |
max_length = max_length, | |
max_prompt_length = max_prompt_length, | |
max_completion_length = max_completion_length, | |
beta = beta, | |
loss_type = loss_type, | |
desirable_weight = desirable_weight, | |
undesirable_weight = undesirable_weight, | |
label_pad_token_id = label_pad_token_id, | |
padding_value = padding_value, | |
truncation_mode = truncation_mode, | |
generate_during_eval = generate_during_eval, | |
is_encoder_decoder = is_encoder_decoder, | |
disable_dropout = disable_dropout, | |
precompute_ref_log_probs = precompute_ref_log_probs, | |
model_init_kwargs = model_init_kwargs, | |
ref_model_init_kwargs = ref_model_init_kwargs, | |
dataset_num_proc = dataset_num_proc,**kwargs) | |
self.vllm_sampling_params = vllm_sampling_params | |
self.unsloth_num_chunks = unsloth_num_chunks | |
pass | |
class _UnslothKTOTrainer(Trainer): | |
r"""""" | |
_tag_names = ["trl", "kto"] | |
def __init__( | |
self, | |
model: Union[PreTrainedModel, nn.Module, str] = None, | |
ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, | |
args: KTOConfig = None, | |
train_dataset: Optional[Dataset] = None, | |
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
processing_class: Optional[ | |
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
] = None, | |
data_collator: Optional[DataCollator] = None, | |
model_init: Optional[Callable[[], PreTrainedModel]] = None, | |
callbacks: Optional[list[TrainerCallback]] = None, | |
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
peft_config: Optional[dict] = None, | |
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, | |
model_adapter_name: Optional[str] = None, | |
ref_adapter_name: Optional[str] = None, | |
): | |
if type(args) is TrainingArguments: | |
raise ValueError("Please use `KTOConfig` instead TrainingArguments.") | |
if not isinstance(model, str) and ref_model is model: | |
raise ValueError( | |
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " | |
"same as `model`, you must mass a copy of it, or `None` if you use peft." | |
) | |
if args.model_init_kwargs is None: | |
model_init_kwargs = {} | |
elif not isinstance(model, str): | |
raise ValueError("You passed model_kwargs to the KTOTrainer. But your model is already instantiated.") | |
else: | |
model_init_kwargs = args.model_init_kwargs | |
torch_dtype = model_init_kwargs.get("torch_dtype") | |
if torch_dtype is not None: | |
# Convert to `torch.dtype` if an str is passed | |
if isinstance(torch_dtype, str) and torch_dtype != "auto": | |
torch_dtype = getattr(torch, torch_dtype) | |
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"Invalid `torch_dtype` passed to the KTOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." | |
) | |
model_init_kwargs["torch_dtype"] = torch_dtype | |
if args.ref_model_init_kwargs is None: | |
ref_model_init_kwargs = {} | |
elif not isinstance(ref_model, str): | |
raise ValueError( | |
"You passed ref_model_kwargs to the KTOTrainer. But your ref_model is already instantiated." | |
) | |
else: | |
ref_model_init_kwargs = args.ref_model_init_kwargs | |
torch_dtype = ref_model_init_kwargs.get("torch_dtype") | |
if torch_dtype is not None: | |
# Convert to `torch.dtype` if an str is passed | |
if isinstance(torch_dtype, str) and torch_dtype != "auto": | |
torch_dtype = getattr(torch, torch_dtype) | |
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"Invalid `torch_dtype` passed to the KTOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." | |
) | |
ref_model_init_kwargs["torch_dtype"] = torch_dtype | |
if isinstance(model, str): | |
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) | |
if isinstance(ref_model, str): | |
ref_model = AutoModelForCausalLM.from_pretrained(ref_model, **ref_model_init_kwargs) | |
# Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16` | |
# has been called in order to properly call autocast if needed. | |
self._peft_has_been_casted_to_bf16 = False | |
if not is_peft_available() and peft_config is not None: | |
raise ValueError( | |
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it with `pip install peft` to use the PEFT models" | |
) | |
elif is_peft_available() and peft_config is not None: | |
# if model is a peft model and we have a peft_config, we merge and unload it first | |
if isinstance(model, PeftModel): | |
model = model.merge_and_unload() | |
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): | |
_support_gc_kwargs = hasattr( | |
args, "gradient_checkpointing_kwargs" | |
) and "gradient_checkpointing_kwargs" in list( | |
inspect.signature(prepare_model_for_kbit_training).parameters | |
) | |
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} | |
if _support_gc_kwargs: | |
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs | |
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) | |
elif getattr(args, "gradient_checkpointing", False): | |
# For backward compatibility with older versions of transformers | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
# get peft model with the given config | |
model = model | |
if args.bf16 and getattr(model, "is_loaded_in_4bit", False): | |
peft_module_casting_to_bf16(model) | |
# If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager | |
self._peft_has_been_casted_to_bf16 = True | |
# For models that use gradient_checkpointing, we need to attach a hook that enables input | |
# to explicitly have `requires_grad=True`, otherwise training will either silently | |
# fail or completely fail. | |
elif getattr(args, "gradient_checkpointing", False): | |
# For backward compatibility with older versions of transformers | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
if args.generate_during_eval and not (is_wandb_available() or is_comet_available()): | |
raise ValueError( | |
"`generate_during_eval=True` requires Weights and Biases or Comet to be installed." | |
" Please install `wandb` or `comet-ml` to resolve." | |
) | |
if model is not None: | |
self.is_encoder_decoder = model.config.is_encoder_decoder | |
elif args.is_encoder_decoder is None: | |
raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.") | |
else: | |
self.is_encoder_decoder = args.is_encoder_decoder | |
self.is_peft_model = is_peft_available() and isinstance(model, PeftModel) | |
self.model_adapter_name = model_adapter_name | |
self.ref_adapter_name = ref_adapter_name | |
if ref_model: | |
self.ref_model = ref_model | |
elif self.is_peft_model or args.precompute_ref_log_probs: | |
# The `model` with adapters turned off will be used as the reference model | |
self.ref_model = None | |
else: | |
self.ref_model = create_reference_model(model) | |
if processing_class is None: | |
raise ValueError( | |
"max_length or a processing_class must be specified when using the default DPODataCollatorWithPadding" | |
) | |
if args.max_length is None: | |
warnings.warn( | |
"When using DPODataCollatorWithPadding, you should set `max_length` in the KTOTrainer's init" | |
" it will be set to `512` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
max_length = 512 | |
if args.max_length is not None: | |
max_length = args.max_length | |
if args.max_prompt_length is None: | |
warnings.warn( | |
"When using DPODataCollatorWithPadding, you should set `max_prompt_length` in the KTOTrainer's init" | |
" it will be set to `128` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
max_prompt_length = 128 | |
if args.max_prompt_length is not None: | |
max_prompt_length = args.max_prompt_length | |
max_completion_length = None | |
if args.max_completion_length is None and self.is_encoder_decoder: | |
warnings.warn( | |
"When using DPODataCollatorWithPadding with an encoder decoder architecture, you should set `max_completion_length` in the KTOTrainer's init" | |
" it will be set to `128` by default, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
max_completion_length = 128 | |
if args.max_completion_length is not None and self.is_encoder_decoder: | |
max_completion_length = args.max_completion_length | |
if data_collator is None: | |
data_collator = DPODataCollatorWithPadding( | |
pad_token_id=processing_class.pad_token_id, | |
label_pad_token_id=args.label_pad_token_id, | |
is_encoder_decoder=self.is_encoder_decoder, | |
) | |
if args.remove_unused_columns: | |
args.remove_unused_columns = False | |
# warn users | |
warnings.warn( | |
"When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your KTOConfig" | |
" we have set it for you, but you should do it yourself in the future.", | |
UserWarning, | |
) | |
self.use_dpo_data_collator = True | |
else: | |
self.use_dpo_data_collator = False | |
# Disable dropout in the model and reference model | |
if args.disable_dropout: | |
disable_dropout_in_model(model) | |
if self.ref_model is not None: | |
disable_dropout_in_model(self.ref_model) | |
self.loss_type = args.loss_type | |
self.max_length = max_length | |
self.generate_during_eval = args.generate_during_eval | |
self.label_pad_token_id = args.label_pad_token_id | |
self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id | |
self.max_prompt_length = max_prompt_length | |
self.truncation_mode = args.truncation_mode | |
self.max_completion_length = max_completion_length | |
self.processing_class = processing_class | |
self.precompute_ref_log_probs = args.precompute_ref_log_probs | |
# Not all losses require a KL calculation | |
self.calculate_KL = True | |
if self.loss_type in ["apo_zero_unpaired"]: | |
self.calculate_KL = False | |
# Since ref_logs are precomputed on the first call to get_train/eval_dataloader | |
# keep track of first called to avoid computation of future calls | |
self._precomputed_train_ref_log_probs = False | |
self._precomputed_eval_ref_log_probs = False | |
# metric | |
self._stored_metrics = defaultdict(lambda: defaultdict(list)) | |
# KTO parameter | |
self.beta = args.beta | |
self.desirable_weight = args.desirable_weight | |
self.undesirable_weight = args.undesirable_weight | |
self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) | |
self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0) | |
if self.aux_loss_enabled and self.aux_loss_coef == 0.0: | |
warnings.warn( | |
"You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to " | |
"`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value " | |
"greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary " | |
"loss.", | |
UserWarning, | |
) | |
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the | |
# input tensor associated with the key "input_ids". However, in KTO, the sampled data does not include the | |
# "input_ids" key. Instead, the available keys are "prompt_input_ids" and "completion_input_ids". As a result, | |
# the trainer issues the warning: "Could not estimate the number of tokens of the input, floating-point | |
# operations will not be computed." To suppress this warning, we set the "estimate_tokens" key in the model's | |
# "warnings_issued" dictionary to True. This acts as a flag to indicate that the warning has already been | |
# issued. | |
model.warnings_issued["estimate_tokens"] = True | |
# Compute that only on the main process for faster data processing. | |
# see: https://github.com/huggingface/trl/pull/1255 | |
with PartialState().local_main_process_first(): | |
# Extract the prompt if needed | |
train_dataset = train_dataset.map( | |
maybe_extract_prompt, num_proc=args.dataset_num_proc, desc="Extracting prompt from train dataset" | |
) | |
# Unpair the dataset if needed | |
train_dataset = maybe_unpair_preference_dataset( | |
train_dataset, args.dataset_num_proc, desc="Unpairing train dataset" | |
) | |
# Apply the chat template if needed | |
train_dataset = train_dataset.map( | |
maybe_apply_chat_template, | |
fn_kwargs={"tokenizer": processing_class}, | |
num_proc=args.dataset_num_proc, | |
desc="Applying chat template to train dataset", | |
) | |
if eval_dataset is not None: | |
eval_dataset = eval_dataset.map( | |
maybe_extract_prompt, num_proc=args.dataset_num_proc, desc="Extracting prompt from eval dataset" | |
) | |
eval_dataset = maybe_unpair_preference_dataset( | |
eval_dataset, args.dataset_num_proc, desc="Unpairing eval dataset" | |
) | |
eval_dataset = eval_dataset.map( | |
maybe_apply_chat_template, | |
fn_kwargs={"tokenizer": processing_class}, | |
num_proc=args.dataset_num_proc, | |
desc="Applying chat template to eval dataset", | |
) | |
# Tokenize and prepare the training datasets | |
train_dataset = train_dataset.map( | |
_tokenize, | |
batched=True, | |
fn_kwargs={"tokenizer": self.processing_class}, | |
num_proc=args.dataset_num_proc, | |
desc="Tokenizing train dataset", | |
) | |
fn_kwargs = { | |
"prefix": "", | |
"is_encoder_decoder": self.is_encoder_decoder, | |
"tokenizer": self.processing_class, | |
"max_length": self.max_length, | |
"truncation_mode": self.truncation_mode, | |
"label_pad_token_id": self.label_pad_token_id, | |
"max_prompt_length": self.max_prompt_length, | |
"max_completion_length": self.max_completion_length, | |
} | |
train_dataset = train_dataset.map( | |
_process_tokens, | |
fn_kwargs=fn_kwargs, | |
num_proc=args.dataset_num_proc, | |
desc="Processing tokenized train dataset", | |
) | |
# Tokenize and prepare the eval datasets | |
if eval_dataset is not None: | |
eval_dataset = eval_dataset.map( | |
_tokenize, | |
fn_kwargs={"tokenizer": self.processing_class}, | |
batched=True, | |
num_proc=args.dataset_num_proc, | |
desc="Tokenizing eval dataset", | |
) | |
eval_dataset = eval_dataset.map( | |
_process_tokens, | |
fn_kwargs=fn_kwargs, | |
num_proc=args.dataset_num_proc, | |
desc="Processing tokenized eval dataset", | |
) | |
# Get KL datasets if needed | |
if self.calculate_KL: | |
if args.per_device_train_batch_size <= 1: | |
raise ValueError( | |
"Actual (not effective) batch size must be > 1. KTO will not work properly because the KL term will be equivalent to the implied reward." | |
) | |
# create pairs for estimating the KL term by flipping the matched pairs in each batch of size total_batch_size | |
# i.e., (x_1, y_1), ..., (x_n, y_n) --> (x_1, y_n), ..., (x_n, y_1) = (x'_1, y'_1), ..., (x'_n, y'_n) | |
train_kl_dataset = train_dataset.map( | |
_get_kl_dataset, | |
batched=True, | |
batch_size=args.per_device_train_batch_size, | |
num_proc=args.dataset_num_proc, | |
desc="Extracting KL train dataset", | |
) | |
fn_kwargs["prefix"] = "KL_" | |
train_kl_dataset = train_kl_dataset.map( | |
_process_tokens, | |
fn_kwargs=fn_kwargs, | |
num_proc=args.dataset_num_proc, | |
remove_columns=[c for c in train_kl_dataset.column_names if c in train_dataset.column_names], | |
desc="Processing tokenized train KL dataset", | |
) | |
# merge the datasets | |
train_dataset = concatenate_datasets([train_dataset, train_kl_dataset], axis=1) | |
if eval_dataset is not None: | |
# Get KL dataset | |
eval_kl_dataset = eval_dataset.map( | |
_get_kl_dataset, | |
batched=True, | |
batch_size=args.per_device_train_batch_size, | |
num_proc=args.dataset_num_proc, | |
desc="Extracting eval KL dataset", | |
) | |
eval_kl_dataset = eval_kl_dataset.map( | |
_process_tokens, | |
fn_kwargs=fn_kwargs, | |
num_proc=args.dataset_num_proc, | |
remove_columns=[c for c in eval_kl_dataset.column_names if c in eval_dataset.column_names], | |
desc="Processing tokenized eval KL dataset", | |
) | |
# merge the datasets | |
eval_dataset = concatenate_datasets([eval_dataset, eval_kl_dataset], axis=1) | |
# calculate dataset desirability balance | |
num_desirable = max(sum(train_dataset["label"]), 1) | |
num_undesirable = max(len(train_dataset["label"]) - num_desirable, 1) # "label" is binary | |
if num_desirable != num_undesirable: | |
# The lower and upper bounds come from Eq. (8) of https://huggingface.co/papers/2402.01306 | |
des_weight_lower_bound = round((num_undesirable * self.undesirable_weight / num_desirable) * 1, 2) | |
des_weight_upper_bound = round((num_undesirable * self.undesirable_weight / num_desirable) * 1.33, 2) | |
und_weight_lower_bound = round((num_desirable * self.desirable_weight / num_undesirable) / 1.33, 2) | |
und_weight_upper_bound = round((num_desirable * self.desirable_weight / num_undesirable) / 1, 2) | |
des_weight_in_range = des_weight_lower_bound <= self.desirable_weight <= des_weight_upper_bound | |
und_weight_in_range = und_weight_lower_bound <= self.undesirable_weight <= und_weight_upper_bound | |
if not (des_weight_in_range or und_weight_in_range): | |
warnings.warn( | |
"You have different amounts of desirable/positive and undesirable/negative examples but the " | |
"weights on the desirable and undesirable losses don't seem to be in an ideal range. Based " | |
f"on your data, we recommend EITHER " | |
f"desirable_weight in [{des_weight_lower_bound}, {des_weight_upper_bound}] or " | |
f"undesirable_weight in [{und_weight_lower_bound}, {und_weight_upper_bound}] (but NOT BOTH). " | |
"See the documentation on how to optimally set these weights.", | |
UserWarning, | |
) | |
super().__init__( | |
model=model, | |
args=args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
processing_class=processing_class, | |
model_init=model_init, | |
compute_metrics=compute_metrics, | |
callbacks=callbacks, | |
optimizers=optimizers, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
) | |
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the | |
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set | |
# self.model_accepts_loss_kwargs to False to enable scaling. | |
self.model_accepts_loss_kwargs = False | |
# Add tags for models that have been loaded with the correct transformers version | |
if hasattr(self.model, "add_model_tags"): | |
self.model.add_model_tags(self._tag_names) | |
if not hasattr(self, "accelerator"): | |
raise AttributeError( | |
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." | |
) | |
# Deepspeed Zero-3 does not support precompute_ref_log_probs | |
if self.is_deepspeed_enabled: | |
if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs: | |
raise ValueError( | |
"You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`." | |
) | |
if self.ref_model is None: | |
if not (self.is_peft_model or self.precompute_ref_log_probs): | |
raise ValueError( | |
"No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`" | |
) | |
else: | |
if self.is_deepspeed_enabled: | |
self.ref_model = self._prepare_deepspeed(self.ref_model) | |
else: | |
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) | |
def _prepare_deepspeed(self, model: PreTrainedModelWrapper): | |
# Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473 | |
deepspeed_plugin = self.accelerator.state.deepspeed_plugin | |
config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config) | |
if model is not None: | |
if hasattr(model, "config"): | |
hidden_size = ( | |
max(model.config.hidden_sizes) | |
if getattr(model.config, "hidden_sizes", None) | |
else getattr(model.config, "hidden_size", None) | |
) | |
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3: | |
# Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0` | |
# This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081 | |
config_kwargs.update( | |
{ | |
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size, | |
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, | |
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size, | |
} | |
) | |
# If ZeRO-3 is used, we shard both the active and reference model. | |
# Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO disabled (stage 0) | |
if config_kwargs["zero_optimization"]["stage"] != 3: | |
config_kwargs["zero_optimization"]["stage"] = 0 | |
model, *_ = deepspeed.initialize(model=model, config=config_kwargs) | |
model.eval() | |
return model | |
def null_ref_context(self): | |
"""Context manager for handling null reference model (that is, peft adapter manipulation).""" | |
with ( | |
self.accelerator.unwrap_model(self.model).disable_adapter() | |
if self.is_peft_model and not self.ref_adapter_name | |
else nullcontext() | |
): | |
if self.ref_adapter_name: | |
self.model.set_adapter(self.ref_adapter_name) | |
yield | |
if self.ref_adapter_name: | |
self.model.set_adapter(self.model_adapter_name or "default") | |
def get_train_dataloader(self) -> DataLoader: | |
""" | |
Returns the training [`~torch.utils.data.DataLoader`]. | |
Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`. | |
""" | |
if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs: | |
dataloader_params = { | |
"batch_size": self.args.per_device_train_batch_size, | |
"collate_fn": self.data_collator, | |
"num_workers": self.args.dataloader_num_workers, | |
"pin_memory": self.args.dataloader_pin_memory, | |
"shuffle": False, | |
} | |
# prepare dataloader | |
data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params)) | |
reference_completion_logps = [] | |
reference_KL_logps = [] | |
for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"): | |
reference_completion_logp, reference_KL_logp = self.compute_reference_log_probs(padded_batch) | |
reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp) | |
reference_completion_logps.append(reference_completion_logp.cpu()) | |
if self.calculate_KL: | |
reference_KL_logp = self.accelerator.gather_for_metrics(reference_KL_logp) | |
reference_KL_logps.append(reference_KL_logp.cpu()) | |
self.train_dataset = self.train_dataset.add_column( | |
name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy() | |
) | |
if self.calculate_KL: | |
self.train_dataset = self.train_dataset.add_column( | |
name="reference_KL_logps", column=torch.cat(reference_KL_logps).float().numpy() | |
) | |
self._precomputed_train_ref_log_probs = True | |
return super().get_train_dataloader() | |
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: | |
""" | |
Returns the evaluation [`~torch.utils.data.DataLoader`]. | |
Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`. | |
Args: | |
eval_dataset (`torch.utils.data.Dataset`, *optional*): | |
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted | |
by the `model.forward()` method are automatically removed. It must implement `__len__`. | |
""" | |
if eval_dataset is None and self.eval_dataset is None: | |
raise ValueError("Trainer: evaluation requires an eval_dataset.") | |
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset | |
if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs: | |
dataloader_params = { | |
"batch_size": self.args.per_device_eval_batch_size, | |
"collate_fn": self.data_collator, | |
"num_workers": self.args.dataloader_num_workers, | |
"pin_memory": self.args.dataloader_pin_memory, | |
"shuffle": False, | |
} | |
# prepare dataloader | |
data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params)) | |
reference_completion_logps = [] | |
reference_KL_logps = [] | |
for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"): | |
reference_completion_logp, reference_KL_logp = self.compute_reference_log_probs(padded_batch) | |
reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp) | |
reference_completion_logps.append(reference_completion_logp.cpu()) | |
if self.calculate_KL: | |
reference_KL_logp = self.accelerator.gather_for_metrics(reference_KL_logp) | |
reference_KL_logps.append(reference_KL_logp.cpu()) | |
eval_dataset = eval_dataset.add_column( | |
name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy() | |
) | |
if self.calculate_KL: | |
eval_dataset = eval_dataset.add_column( | |
name="reference_KL_logps", column=torch.cat(reference_KL_logps).float().numpy() | |
) | |
# Save calculated reference_chosen_logps and reference_rejected_logps to the eval_dataset for subsequent runs | |
if self.eval_dataset is not None: | |
self.eval_dataset = eval_dataset | |
self._precomputed_eval_ref_log_probs = True | |
return super().get_eval_dataloader(eval_dataset=eval_dataset) | |
def compute_reference_log_probs(self, padded_batch: dict) -> dict: | |
"""Computes log probabilities of the reference model for a single padded batch of a KTO specific dataset.""" | |
with torch.no_grad(): | |
if self.ref_model is None: | |
with self.null_ref_context(): | |
if self.is_encoder_decoder: | |
completion_logits = self.model( | |
padded_batch["prompt_input_ids"], | |
attention_mask=padded_batch["prompt_attention_mask"], | |
decoder_input_ids=padded_batch.get("completion_decoder_input_ids"), | |
labels=padded_batch["completion_labels"], | |
).logits | |
if self.calculate_KL: | |
KL_logits = self.model( | |
padded_batch["KL_prompt_input_ids"], | |
attention_mask=padded_batch["KL_prompt_attention_mask"], | |
decoder_input_ids=padded_batch.get("KL_completion_decoder_input_ids"), | |
labels=padded_batch["KL_completion_labels"], | |
).logits | |
else: | |
completion_logits = self.model( | |
padded_batch["completion_input_ids"], | |
attention_mask=padded_batch["completion_attention_mask"], | |
).logits | |
if self.calculate_KL: | |
KL_logits = self.model( | |
padded_batch["KL_completion_input_ids"], | |
attention_mask=padded_batch["KL_completion_attention_mask"], | |
).logits | |
else: | |
if self.is_encoder_decoder: | |
completion_logits = self.ref_model( | |
padded_batch["prompt_input_ids"], | |
attention_mask=padded_batch["prompt_attention_mask"], | |
decoder_input_ids=padded_batch.get("completion_decoder_input_ids"), | |
labels=padded_batch["completion_labels"], | |
).logits | |
if self.calculate_KL: | |
KL_logits = self.ref_model( | |
padded_batch["KL_prompt_input_ids"], | |
attention_mask=padded_batch["KL_prompt_attention_mask"], | |
decoder_input_ids=padded_batch.get("KL_completion_decoder_input_ids"), | |
labels=padded_batch["KL_completion_labels"], | |
).logits | |
else: | |
completion_logits = self.ref_model( | |
padded_batch["completion_input_ids"], attention_mask=padded_batch["completion_attention_mask"] | |
).logits | |
if self.calculate_KL: | |
KL_logits = self.ref_model( | |
padded_batch["KL_completion_input_ids"], | |
attention_mask=padded_batch["KL_completion_attention_mask"], | |
).logits | |
completion_logps = self.get_batch_logps( | |
completion_logits, | |
padded_batch["completion_labels"], | |
average_log_prob=False, | |
is_encoder_decoder=self.is_encoder_decoder, | |
label_pad_token_id=self.label_pad_token_id, | |
) | |
if self.calculate_KL: | |
KL_logps = self.get_batch_logps( | |
KL_logits, | |
padded_batch["KL_completion_labels"], | |
average_log_prob=False, | |
is_encoder_decoder=self.is_encoder_decoder, | |
label_pad_token_id=self.label_pad_token_id, | |
) | |
else: | |
KL_logps = None | |
return completion_logps, KL_logps | |
def get_batch_logps( | |
logits: torch.FloatTensor, | |
labels: torch.LongTensor, | |
average_log_prob: bool = False, | |
label_pad_token_id: int = -100, | |
is_encoder_decoder: bool = False, | |
) -> torch.FloatTensor: | |
"""Compute the log probabilities of the given labels under the given logits. | |
Args: | |
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size) | |
labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length) | |
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. | |
Returns: | |
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. | |
""" | |
if logits.shape[:-1] != labels.shape: | |
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.") | |
if not is_encoder_decoder: | |
labels = labels[:, 1:].clone() | |
logits = logits[:, :-1, :] | |
else: | |
# Fixes end-dec RuntimeError | |
labels = labels.clone() | |
loss_mask = labels != label_pad_token_id | |
# dummy token; we'll ignore the losses on these tokens later | |
labels[labels == label_pad_token_id] = 0 | |
per_token_logps = selective_log_softmax(logits, labels) | |
if average_log_prob: | |
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) | |
else: | |
return (per_token_logps * loss_mask).sum(-1) | |
def forward( | |
self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]] | |
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
if self.calculate_KL: | |
KL_logps = None | |
KL_model_kwargs = ( | |
{ | |
"input_ids": batch["KL_prompt_input_ids"], | |
"attention_mask": batch["KL_prompt_attention_mask"], | |
"labels": batch["KL_completion_labels"], | |
"decoder_input_ids": batch.get("KL_completion_decoder_input_ids"), | |
} | |
if self.is_encoder_decoder | |
else { | |
"input_ids": batch["KL_completion_input_ids"], | |
"attention_mask": batch["KL_completion_attention_mask"], | |
} | |
) | |
with torch.no_grad(): | |
KL_logits = model( | |
**KL_model_kwargs, | |
).logits | |
KL_logps = self.get_batch_logps( | |
KL_logits, | |
batch["KL_completion_labels"], | |
average_log_prob=False, | |
is_encoder_decoder=self.is_encoder_decoder, | |
label_pad_token_id=self.label_pad_token_id, | |
) | |
else: | |
KL_logps = None | |
model_kwargs = ( | |
{ | |
"labels": batch["completion_labels"], | |
"decoder_input_ids": batch.get("completion_decoder_input_ids"), | |
} | |
if self.is_encoder_decoder | |
else {} | |
) | |
if self.aux_loss_enabled: | |
model_kwargs["output_router_logits"] = True | |
outputs = model( | |
batch["completion_input_ids"], | |
attention_mask=batch["completion_attention_mask"], | |
**model_kwargs, | |
) | |
completion_logits = outputs.logits | |
completion_logps = self.get_batch_logps( | |
completion_logits, | |
batch["completion_labels"], | |
average_log_prob=False, | |
is_encoder_decoder=self.is_encoder_decoder, | |
label_pad_token_id=self.label_pad_token_id, | |
) | |
if completion_logps.shape[0] != len(batch["label"]): | |
raise ValueError( | |
"There is a mismatch between the number of examples in this batch and the number of " | |
"examples for which an output sequence was predicted." | |
) | |
chosen_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is True] | |
rejected_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is False] | |
chosen_logps = completion_logps[chosen_idx, ...] | |
rejected_logps = completion_logps[rejected_idx, ...] | |
chosen_logits = completion_logits[chosen_idx, ...] | |
rejected_logits = completion_logits[rejected_idx, ...] | |
if self.aux_loss_enabled: | |
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, KL_logps, outputs.aux_loss) | |
else: | |
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, KL_logps) | |
def kto_loss( | |
self, | |
policy_chosen_logps: torch.FloatTensor, | |
policy_rejected_logps: torch.FloatTensor, | |
policy_KL_logps: torch.FloatTensor, | |
reference_chosen_logps: torch.FloatTensor, | |
reference_rejected_logps: torch.FloatTensor, | |
reference_KL_logps: torch.FloatTensor, | |
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
"""Compute the KTO loss for a batch of policy and reference model log probabilities. | |
Args: | |
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (num(chosen) in batch_size,) | |
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (num(rejected) in batch_size,) | |
policy_KL_logps: Log probabilities of the policy model for the KL responses. Shape: (batch_size,) | |
reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (num(chosen) in batch_size,) | |
reference_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (num(rejected) in batch_size,) | |
reference_KL_logps: Log probabilities of the reference model for the KL responses. Shape: (batch_size,) | |
Returns: | |
A tuple of four tensors: (losses, chosen_rewards, rejected_rewards, KL). | |
The losses tensor contains the KTO loss for each example in the batch. | |
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively. | |
The KL tensor contains the detached KL divergence estimate between the policy and reference models. | |
""" | |
if self.calculate_KL: | |
kl = (policy_KL_logps - reference_KL_logps).mean().detach() | |
kl = self.accelerator.gather_for_metrics(kl).mean().clamp(min=0) | |
else: | |
kl = torch.zeros(1).to(policy_chosen_logps.device) | |
# Chosen losses | |
if policy_chosen_logps.shape[0] != 0 or reference_chosen_logps.shape[0] != 0: | |
chosen_logratios = policy_chosen_logps - reference_chosen_logps | |
if self.loss_type == "kto": | |
# Eqn (7) of the KTO paper (https://huggingface.co/papers/2402.01306) | |
chosen_losses = 1 - F.sigmoid(self.beta * (chosen_logratios - kl)) | |
elif self.loss_type == "apo_zero_unpaired": | |
# Unpaired variant of Eqn (7) of the APO paper (https://huggingface.co/papers/2408.06266) | |
# Use this loss when you believe the chosen outputs are better than your model's default output | |
chosen_losses = 1 - F.sigmoid(self.beta * chosen_logratios) | |
chosen_rewards = self.beta * chosen_logratios.detach() | |
else: | |
# lists can't be empty -- if they are, then accelerate.gather will hang | |
chosen_losses = torch.Tensor([]).to(self.accelerator.device) | |
chosen_rewards = torch.Tensor([]).to(self.accelerator.device) | |
# Rejected losses | |
if policy_rejected_logps.shape[0] != 0 or reference_rejected_logps.shape[0] != 0: | |
rejected_logratios = policy_rejected_logps - reference_rejected_logps | |
if self.loss_type == "kto": | |
rejected_losses = 1 - F.sigmoid(self.beta * (kl - rejected_logratios)) | |
elif self.loss_type == "apo_zero_unpaired": | |
rejected_losses = F.sigmoid(self.beta * rejected_logratios) | |
rejected_rewards = self.beta * rejected_logratios.detach() | |
else: | |
# lists can't be empty -- if they are, then accelerate.gather will hang | |
rejected_losses = torch.Tensor([]).to(self.accelerator.device) | |
rejected_rewards = torch.Tensor([]).to(self.accelerator.device) | |
losses = torch.cat( | |
(self.desirable_weight * chosen_losses, self.undesirable_weight * rejected_losses), | |
0, | |
) | |
return losses, chosen_rewards, rejected_rewards, kl | |
def get_batch_loss_metrics( | |
self, | |
model, | |
batch: dict[str, Union[list, torch.LongTensor]], | |
): | |
"""Compute the KTO loss and other metrics for the given batch of inputs for train or test.""" | |
metrics = {} | |
batch = {k: (v.to(self.accelerator.device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()} | |
forward_output = self.forward(model, batch) | |
( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
policy_chosen_logits, | |
policy_rejected_logits, | |
policy_KL_logps, | |
) = forward_output[:5] | |
if self.aux_loss_enabled: | |
aux_loss = forward_output[5] | |
# if reference_logps in batch use them, otherwise use the reference model | |
if "reference_logps" in batch: | |
chosen_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is True] | |
rejected_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is False] | |
reference_chosen_logps = batch["reference_logps"][chosen_idx, ...] | |
reference_rejected_logps = batch["reference_logps"][rejected_idx, ...] | |
if self.calculate_KL: | |
reference_KL_logps = batch["reference_KL_logps"] | |
else: | |
reference_KL_logps = None | |
else: | |
with torch.no_grad(): | |
if self.ref_model is None: | |
with self.null_ref_context(): | |
( | |
reference_chosen_logps, | |
reference_rejected_logps, | |
_, | |
_, | |
reference_KL_logps, | |
) = self.forward(self.model, batch)[:5] | |
else: | |
( | |
reference_chosen_logps, | |
reference_rejected_logps, | |
_, | |
_, | |
reference_KL_logps, | |
) = self.forward(self.ref_model, batch)[:5] | |
losses, chosen_rewards, rejected_rewards, kl = self.kto_loss( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
policy_KL_logps, | |
reference_chosen_logps, | |
reference_rejected_logps, | |
reference_KL_logps, | |
) | |
metrics["kl"] = kl.item() | |
num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device) | |
num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device) | |
all_num_chosen = self.accelerator.gather_for_metrics(num_chosen).sum().item() | |
all_num_rejected = self.accelerator.gather_for_metrics(num_rejected).sum().item() | |
if all_num_chosen > 0: | |
metrics["rewards/chosen_sum"] = ( | |
self.accelerator.gather_for_metrics(chosen_rewards.nansum()).nansum().item() | |
) | |
metrics["logps/chosen_sum"] = ( | |
self.accelerator.gather_for_metrics(policy_chosen_logps.nansum()).nansum().item() | |
) | |
metrics["logits/chosen_sum"] = ( | |
self.accelerator.gather_for_metrics(policy_chosen_logits.nansum()).nansum().item() | |
) | |
metrics["count/chosen"] = all_num_chosen | |
if all_num_rejected > 0: | |
metrics["rewards/rejected_sum"] = ( | |
self.accelerator.gather_for_metrics(rejected_rewards.nansum()).nansum().item() | |
) | |
metrics["logps/rejected_sum"] = ( | |
self.accelerator.gather_for_metrics(policy_rejected_logps.nansum()).nansum().item() | |
) | |
metrics["logits/rejected_sum"] = ( | |
self.accelerator.gather_for_metrics(policy_rejected_logits.nansum()).nansum().item() | |
) | |
metrics["count/rejected"] = all_num_rejected | |
loss = losses.nanmean() | |
if self.aux_loss_enabled: | |
loss += self.aux_loss_coef * aux_loss | |
return loss, metrics | |
def compute_loss( | |
self, | |
model: Union[PreTrainedModel, nn.Module], | |
inputs: dict[str, Union[torch.Tensor, Any]], | |
return_outputs=False, | |
num_items_in_batch=None, | |
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: | |
compute_loss_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() | |
with compute_loss_context_manager: | |
loss, metrics = self.get_batch_loss_metrics(model, inputs) | |
# Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class: | |
loss = loss.to(self.args.device) | |
# force log the metrics | |
if self.accelerator.is_main_process: | |
self.store_metrics(metrics, train_eval="train") | |
if return_outputs: | |
return (loss, metrics) | |
return loss | |
def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: | |
for key, value in metrics.items(): | |
self._stored_metrics[train_eval][key].append(value) | |
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: | |
if self.train_dataset is None or not has_length(self.train_dataset): | |
return None | |
return SequentialSampler(self.train_dataset) | |
def generate_from_model_and_ref(self, model, batch: dict[str, torch.LongTensor]) -> tuple[str, str]: | |
"""Generate samples from the model and reference model for the given batch of inputs.""" | |
# If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with | |
# the torch cuda amp context manager as some hidden states are silently casted to full precision. | |
generate_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() | |
with generate_context_manager: | |
policy_output = model.generate( | |
input_ids=batch["prompt_input_ids"], | |
attention_mask=batch["prompt_attention_mask"], | |
max_length=self.max_length, | |
do_sample=True, | |
pad_token_id=self.processing_class.pad_token_id, | |
) | |
# if reference_output in batch use that otherwise use the reference model | |
if "reference_output" in batch: | |
reference_output = batch["reference_output"] | |
else: | |
if self.ref_model is None: | |
with self.null_ref_context(): | |
reference_output = self.model.generate( | |
input_ids=batch["prompt_input_ids"], | |
attention_mask=batch["prompt_attention_mask"], | |
max_length=self.max_length, | |
do_sample=True, | |
pad_token_id=self.processing_class.pad_token_id, | |
) | |
else: | |
reference_output = self.ref_model.generate( | |
input_ids=batch["prompt_input_ids"], | |
attention_mask=batch["prompt_attention_mask"], | |
max_length=self.max_length, | |
do_sample=True, | |
pad_token_id=self.processing_class.pad_token_id, | |
) | |
policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id) | |
policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True) | |
reference_output = pad_to_length(reference_output, self.max_length, self.processing_class.pad_token_id) | |
reference_output_decoded = self.processing_class.batch_decode(reference_output, skip_special_tokens=True) | |
return policy_output_decoded, reference_output_decoded | |
def prediction_step( | |
self, | |
model: Union[PreTrainedModel, nn.Module], | |
inputs: dict[str, Union[torch.Tensor, Any]], | |
prediction_loss_only: bool, | |
ignore_keys: Optional[list[str]] = None, | |
): | |
if ignore_keys is None: | |
if hasattr(model, "config"): | |
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) | |
else: | |
ignore_keys = [] | |
prediction_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() | |
with torch.no_grad(), prediction_context_manager: | |
loss, metrics = self.get_batch_loss_metrics(model, inputs) | |
# force log the metrics | |
if self.accelerator.is_main_process: | |
self.store_metrics(metrics, train_eval="eval") | |
if prediction_loss_only: | |
return (loss.detach(), None, None) | |
# logits for the chosen and rejected samples from model | |
logits_dict = { | |
"eval_logits/chosen": metrics["logits/chosen"], | |
"eval_logits/rejected": metrics["logits/rejected"], | |
} | |
logits = torch.tensor( | |
[v for k, v in logits_dict.items() if k not in ignore_keys], device=self.accelerator.device | |
) | |
labels = torch.zeros(logits.shape[0], device=self.accelerator.device) | |
return (loss.detach(), logits, labels) | |
def evaluation_loop( | |
self, | |
dataloader: DataLoader, | |
description: str, | |
prediction_loss_only: Optional[bool] = None, | |
ignore_keys: Optional[list[str]] = None, | |
metric_key_prefix: str = "eval", | |
) -> EvalLoopOutput: | |
""" | |
Overriding built-in evaluation loop to store metrics for each batch. | |
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`. | |
Works both with or without labels. | |
""" | |
# Sample and save to game log if requested (for one batch to save time) | |
if self.generate_during_eval: | |
# Generate random indices within the range of the total number of samples | |
num_samples = len(dataloader.dataset) | |
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) | |
# Use dataloader.dataset.select to get the random batch without iterating over the DataLoader | |
random_batch_dataset = dataloader.dataset.select(random_indices) | |
random_batch = self.data_collator(random_batch_dataset) | |
random_batch = self._prepare_inputs(random_batch) | |
target_indicies = [i for i in range(len(random_batch["label"])) if random_batch["label"][i] is False] | |
target_batch = { | |
"prompt_input_ids": random_batch["prompt_input_ids"][target_indicies], | |
"prompt_attention_mask": random_batch["prompt_attention_mask"][target_indicies], | |
"prompt": itemgetter(*target_indicies)(random_batch["prompt"]), | |
} | |
policy_output_decoded, ref_output_decoded = self.generate_from_model_and_ref(self.model, target_batch) | |
table = pd.DataFrame( | |
columns=["Prompt", "Policy", "Ref Model"], | |
data=[ | |
[prompt, pol[len(prompt) :], ref[len(prompt) :]] | |
for prompt, pol, ref in zip(target_batch["prompt"], policy_output_decoded, ref_output_decoded) | |
], | |
) | |
if "wandb" in self.args.report_to: | |
wandb.log({"game_log": wandb.Table(data=table)}) | |
if "comet_ml" in self.args.report_to: | |
log_table_to_comet_experiment( | |
name="game_log.csv", | |
table=table, | |
) | |
# Base evaluation | |
initial_output = super().evaluation_loop( | |
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix | |
) | |
return initial_output | |
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: | |
""" | |
Log `logs` on the various objects watching training, including stored metrics. | |
Args: | |
logs (`dict[str, float]`): | |
The values to log. | |
start_time (`float` or `None`, *optional*, defaults to `None`): | |
Start time of the training. | |
""" | |
# logs either has 'loss' or 'eval_loss' | |
train_eval = "train" if "loss" in logs else "eval" | |
# train metrics should have no prefix, eval should have 'eval_' | |
prefix = "eval_" if train_eval == "eval" else "" | |
# accumulate average metrics from sums and lengths | |
for split in ["chosen", "rejected"]: | |
if f"count/{split}" in self._stored_metrics[train_eval]: | |
count_sum = torch.Tensor(self._stored_metrics[train_eval][f"count/{split}"]).sum().item() | |
for metric in ["rewards", "logps", "logits"]: | |
logs[f"{prefix}{metric}/{split}"] = ( | |
torch.Tensor(self._stored_metrics[train_eval][f"{metric}/{split}_sum"]).sum().item() | |
/ count_sum | |
) | |
# delete obsolete metric | |
del self._stored_metrics[train_eval][f"{metric}/{split}_sum"] | |
del self._stored_metrics[train_eval][f"count/{split}"] | |
# calculate reward margin | |
if f"{prefix}rewards/chosen" in logs and f"{prefix}rewards/rejected" in logs: | |
logs[f"{prefix}rewards/margins"] = logs[f"{prefix}rewards/chosen"] - logs[f"{prefix}rewards/rejected"] | |
# Add averaged stored metrics to logs | |
for key, metrics in self._stored_metrics[train_eval].items(): | |
logs[f"{prefix}{key}"] = torch.Tensor(metrics).mean().item() | |
del self._stored_metrics[train_eval] | |
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): | |
return super().log(logs, start_time) | |
else: # transformers<=4.46 | |
return super().log(logs) | |
def create_model_card( | |
self, | |
model_name: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
tags: Union[str, list[str], None] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
model_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the model. | |
dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the dataset used for training. | |
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
Tags to be associated with the model card. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
base_model = self.model.config._name_or_path | |
else: | |
base_model = None | |
tags = tags or [] | |
if isinstance(tags, str): | |
tags = [tags] | |
if hasattr(self.model.config, "unsloth_version"): | |
tags.append("unsloth") | |
citation = textwrap.dedent("""\ | |
@article{ethayarajh2024kto, | |
title = {{KTO: Model Alignment as Prospect Theoretic Optimization}}, | |
author = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela}, | |
year = 2024, | |
eprint = {arXiv:2402.01306}, | |
}""") | |
model_card = generate_model_card( | |
base_model=base_model, | |
model_name=model_name, | |
hub_model_id=self.hub_model_id, | |
dataset_name=dataset_name, | |
tags=tags, | |
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
comet_url=get_comet_experiment_url(), | |
trainer_name="KTO", | |
trainer_citation=citation, | |
paper_title="KTO: Model Alignment as Prospect Theoretic Optimization", | |
paper_id="2402.01306", | |
) | |
model_card.save(os.path.join(self.args.output_dir, "README.md")) | |
class UnslothKTOTrainer(_UnslothKTOTrainer): | |
""" | |
Initialize KTOTrainer. | |
Args: | |
model (`transformers.PreTrainedModel`): | |
The model to train, preferably an `AutoModelForSequenceClassification`. | |
ref_model (`PreTrainedModelWrapper`): | |
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no | |
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. | |
args (`KTOConfig`): | |
The arguments to use for training. | |
train_dataset (`datasets.Dataset`): | |
The dataset to use for training. | |
eval_dataset (`datasets.Dataset`): | |
The dataset to use for evaluation. | |
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): | |
Processing class used to process the data. If provided, will be used to automatically process the inputs | |
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
reuse the fine-tuned model. | |
data_collator (`transformers.DataCollator`, *optional*, defaults to `None`): | |
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used | |
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. | |
model_init (`Callable[[], transformers.PreTrainedModel]`): | |
The model initializer to use for training. If None is specified, the default model initializer will be used. | |
callbacks (`list[transformers.TrainerCallback]`): | |
The callbacks to use for training. | |
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
The optimizer and scheduler to use for training. | |
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
The function to use to preprocess the logits before computing the metrics. | |
peft_config (`dict`, defaults to `None`): | |
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. | |
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): | |
The function to use to compute the metrics. Must take a `EvalPrediction` and return | |
a dictionary string to metric values. | |
model_adapter_name (`str`, defaults to `None`): | |
Name of the train target PEFT adapter, when using LoRA with multiple adapters. | |
ref_adapter_name (`str`, defaults to `None`): | |
Name of the reference PEFT adapter, when using LoRA with multiple adapters. | |
""" | |
def __init__( | |
self, | |
model = None, | |
ref_model = None, | |
args = None, | |
train_dataset = None, | |
eval_dataset = None, | |
processing_class = None, | |
data_collator = None, | |
model_init = None, | |
callbacks = None, | |
preprocess_logits_for_metrics = None, | |
peft_config = None, | |
compute_metrics = None, | |
model_adapter_name = None, | |
ref_adapter_name = None, | |
**kwargs | |
): | |
if args is None: args = UnslothKTOConfig() | |
use_bf16 = getattr(args, 'bf16', False) | |
use_fp16 = getattr(args, 'fp16', False) | |
force_float32 = False | |
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': | |
print('Unsloth: Switching to float32 training since model cannot work with float16') | |
force_float32 = True | |
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
dtype = getattr(model.config, 'torch_dtype', None) | |
if dtype is None: dtype = model.get_input_embeddings().dtype | |
from unsloth_zoo.utils import _get_dtype | |
dtype = _get_dtype(dtype) | |
float16 = dtype == torch.float16 | |
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
if force_float32: | |
args.fp16 = False | |
args.bf16 = False | |
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
args.fp16 = float16 | |
args.bf16 = not float16 | |
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
args.eval_strategy = 'steps' | |
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
if ga_steps is not None and ga_steps > 1: | |
from transformers import __version__ as transformers_version | |
if Version(transformers_version) <= Version('4.45.2'): | |
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
if getattr(args, 'eval_strategy', 'no') != 'no': | |
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
if force_float32: | |
args.bf16_full_eval = False | |
args.fp16_full_eval = False | |
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
args.bf16_full_eval = True | |
args.fp16_full_eval = False | |
elif not bf16_full_eval and not fp16_full_eval: | |
args.bf16_full_eval = args.bf16 | |
args.fp16_full_eval = args.fp16 | |
_output_logits = False | |
if locals().get('compute_metrics', None) is not None: _output_logits = True | |
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
if _output_logits: | |
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
pass | |
else: | |
model_max_seq_length = getattr(model, 'max_seq_length', None) | |
args_max_seq_length = getattr(args, 'max_seq_length', None) | |
if args_max_seq_length is None and model_max_seq_length is not None: | |
max_seq_length = model.max_seq_length | |
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
if model is not None and hasattr(model, 'for_training'): | |
model.for_training() | |
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
if 'processing_class' in locals(): | |
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer | |
from unsloth_zoo.vision_utils import UnslothVisionDataCollator | |
if not isinstance(data_collator, UnslothVisionDataCollator): | |
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: | |
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) | |
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: | |
data_collator = DataCollatorForSeq2Seq(__tokenizer) | |
else: | |
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False | |
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' | |
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} | |
if not isinstance(data_collator, UnslothVisionDataCollator): | |
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): | |
if isinstance(data_collator, DataCollatorForSeq2Seq): | |
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) | |
else: | |
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) | |
other_metrics = [] | |
from unsloth_zoo.logging_utils import PatchRLStatistics | |
PatchRLStatistics('kto_trainer', other_metrics) | |
super().__init__( | |
model = model, | |
ref_model = ref_model, | |
args = args, | |
train_dataset = train_dataset, | |
eval_dataset = eval_dataset, | |
processing_class = processing_class, | |
data_collator = data_collator, | |
model_init = model_init, | |
callbacks = callbacks, | |
preprocess_logits_for_metrics = preprocess_logits_for_metrics, | |
peft_config = peft_config, | |
compute_metrics = compute_metrics, | |
model_adapter_name = model_adapter_name, | |
ref_adapter_name = ref_adapter_name,**kwargs) | |
if hasattr(self, 'neftune_hook_handle'): | |
self.neftune_hook_handle.remove() | |
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
if getattr(args, 'neftune_noise_alpha', None) is not None: | |
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
pass | |
pass | |