Spaces:
Runtime error
Runtime error
""" | |
2025.3.13 | |
2025.3.15 | |
4.48.3 | |
0.15.2 | |
__UNSLOTH_VERSIONING__ | |
""" | |
from torch import Tensor | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from trl.trainer.sft_trainer import (Any, AutoModelForCausalLM, AutoTokenizer, BaseImageProcessor, Callable, ConstantLengthDataset, DataCollator, DataCollatorForLanguageModeling, Dataset, EvalPrediction, FeatureExtractionMixin, IterableDataset, Optional, PeftConfig, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SFTConfig, SFTTrainer, Trainer, TrainerCallback, TrainingArguments, Type, Union, dataclasses, defaultdict, deprecate_kwarg, generate_model_card, get_comet_experiment_url, get_peft_model, is_liger_kernel_available, is_peft_available, is_wandb_available, nn, os, pack_examples, peft, peft_module_casting_to_bf16, prepare_model_for_kbit_training, torch, transformers, version, wandb, warnings, Callable, ConstantLengthDataset, DataCollator, DataCollatorForLanguageModeling, Dataset, IterableDataset, Optional, Union, os, pack_examples, transformers, os) | |
import os | |
from typing import * | |
from dataclasses import dataclass, field | |
from packaging.version import Version | |
import torch | |
import numpy as np | |
from contextlib import nullcontext | |
from torch.nn import functional as F | |
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
torch_compile_options = { | |
"epilogue_fusion" : True, | |
"max_autotune" : False, | |
"shape_padding" : True, | |
"trace.enabled" : False, | |
"triton.cudagraphs" : False, | |
} | |
def selective_log_softmax(logits, index): | |
logits = logits.to(torch.float32) | |
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) | |
# loop to reduce peak mem consumption | |
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) | |
logsumexp_values = torch.logsumexp(logits, dim = -1) | |
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) | |
return per_token_logps | |
class UnslothSFTConfig(SFTConfig): | |
""" | |
Configuration class for the [`SFTTrainer`]. | |
Only the parameters specific to SFT training are listed here. For details on other parameters, refer to the | |
[`~transformers.TrainingArguments`] documentation. | |
Using [`~transformers.HfArgumentParser`] we can turn this class into | |
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
command line. | |
Parameters: | |
> Parameters that control the model | |
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` | |
argument of the [`SFTTrainer`] is provided as a string. | |
use_liger (`bool`, *optional*, defaults to `False`): | |
Monkey patch the model with Liger kernels to increase throughput and reduce memory usage. | |
> Parameters that control the data preprocessing | |
dataset_text_field (`str`, *optional*, defaults to `"text"`): | |
Name of the column that contains text data in the dataset. | |
dataset_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Dictionary of optional keyword arguments for the dataset preparation. The only supported key is | |
`skip_prepare_dataset`. | |
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
Number of processes to use for processing the dataset. | |
max_seq_length (`int` or `None`, *optional*, defaults to `1024`): | |
Maximum length of the tokenized sequence. Sequences longer than `max_seq_length` are truncated from the | |
right. | |
If `None`, no truncation is applied. When packing is enabled, this value sets the sequence length. | |
packing (`bool`, *optional*, defaults to `False`): | |
Whether to pack multiple sequences into a fixed-length format. Uses `max_seq_length` to define sequence | |
length. | |
eval_packing (`bool` or `None`, *optional*, defaults to `None`): | |
Whether to pack the eval dataset. If `None`, uses the same value as `packing`. | |
> Parameters that control the training | |
learning_rate (`float`, *optional*, defaults to `2e-5`): | |
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of | |
[`~transformers.TrainingArguments`]. | |
""" | |
vllm_sampling_params: Optional[Any] = field( | |
default = None, | |
metadata = {'help': 'vLLM SamplingParams'}, | |
) | |
unsloth_num_chunks : Optional[int] = field( | |
default = -1, | |
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
) | |
def __init__( | |
self, | |
output_dir = None, | |
overwrite_output_dir = None, | |
do_train = False, | |
do_eval = False, | |
do_predict = False, | |
eval_strategy = 'no', | |
prediction_loss_only = False, | |
per_device_train_batch_size = 4, | |
per_device_eval_batch_size = 4, | |
per_gpu_train_batch_size = None, | |
per_gpu_eval_batch_size = None, | |
gradient_accumulation_steps = 2, | |
eval_accumulation_steps = 2, | |
eval_delay = 0, | |
torch_empty_cache_steps = 250, | |
learning_rate = 5e-05, | |
weight_decay = 0.01, | |
adam_beta1 = 0.9, | |
adam_beta2 = 0.999, | |
adam_epsilon = 1e-08, | |
max_grad_norm = 1.0, | |
num_train_epochs = 3.0, | |
max_steps = -1, | |
lr_scheduler_type = 'linear', | |
warmup_ratio = 0.1, | |
warmup_steps = 0, | |
log_level = 'passive', | |
log_level_replica = 'warning', | |
log_on_each_node = True, | |
logging_dir = None, | |
logging_strategy = 'steps', | |
logging_first_step = False, | |
logging_steps = 1, | |
logging_nan_inf_filter = False, | |
save_strategy = 'steps', | |
save_steps = 500, | |
save_total_limit = None, | |
save_safetensors = True, | |
save_on_each_node = False, | |
save_only_model = False, | |
restore_callback_states_from_checkpoint = False, | |
no_cuda = False, | |
use_cpu = False, | |
use_mps_device = False, | |
seed = 3407, | |
data_seed = 3407, | |
jit_mode_eval = False, | |
use_ipex = False, | |
bf16 = False, | |
fp16 = False, | |
fp16_opt_level = 'O1', | |
half_precision_backend = 'auto', | |
bf16_full_eval = False, | |
fp16_full_eval = False, | |
tf32 = None, | |
local_rank = -1, | |
ddp_backend = None, | |
tpu_num_cores = None, | |
tpu_metrics_debug = False, | |
debug = '', | |
dataloader_drop_last = False, | |
eval_steps = None, | |
dataloader_num_workers = 0, | |
dataloader_prefetch_factor = None, | |
past_index = -1, | |
run_name = None, | |
disable_tqdm = None, | |
remove_unused_columns = True, | |
label_names = None, | |
load_best_model_at_end = False, | |
metric_for_best_model = None, | |
greater_is_better = None, | |
ignore_data_skip = False, | |
fsdp = '', | |
fsdp_min_num_params = 0, | |
fsdp_config = None, | |
fsdp_transformer_layer_cls_to_wrap = None, | |
accelerator_config = None, | |
deepspeed = None, | |
label_smoothing_factor = 0.0, | |
optim = 'adamw_8bit', | |
optim_args = None, | |
adafactor = False, | |
group_by_length = False, | |
length_column_name = 'length', | |
report_to = None, | |
ddp_find_unused_parameters = None, | |
ddp_bucket_cap_mb = None, | |
ddp_broadcast_buffers = None, | |
dataloader_pin_memory = True, | |
dataloader_persistent_workers = False, | |
skip_memory_metrics = True, | |
use_legacy_prediction_loop = False, | |
push_to_hub = False, | |
resume_from_checkpoint = None, | |
hub_model_id = None, | |
hub_strategy = 'every_save', | |
hub_token = None, | |
hub_private_repo = None, | |
hub_always_push = False, | |
gradient_checkpointing = False, | |
gradient_checkpointing_kwargs = None, | |
include_inputs_for_metrics = False, | |
eval_do_concat_batches = True, | |
fp16_backend = 'auto', | |
evaluation_strategy = None, | |
push_to_hub_model_id = None, | |
push_to_hub_organization = None, | |
push_to_hub_token = None, | |
mp_parameters = '', | |
auto_find_batch_size = False, | |
full_determinism = False, | |
torchdynamo = None, | |
ray_scope = 'last', | |
ddp_timeout = 1800, | |
torch_compile = False, | |
torch_compile_backend = None, | |
torch_compile_mode = None, | |
dispatch_batches = None, | |
split_batches = None, | |
include_tokens_per_second = False, | |
include_num_input_tokens_seen = False, | |
neftune_noise_alpha = None, | |
optim_target_modules = None, | |
batch_eval_metrics = False, | |
eval_on_start = False, | |
use_liger_kernel = False, | |
eval_use_gather_object = False, | |
average_tokens_across_devices = False, | |
model_init_kwargs = None, | |
use_liger = False, | |
dataset_text_field = 'text', | |
dataset_kwargs = None, | |
dataset_num_proc = None, | |
max_seq_length = None, | |
packing = False, | |
eval_packing = None, | |
dataset_batch_size = None, | |
num_of_sequences = None, | |
chars_per_token = None, | |
vllm_sampling_params = None, | |
unsloth_num_chunks = -1, | |
**kwargs, | |
): | |
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
output_dir = 'unsloth_training_checkpoints' | |
save_strategy = 'no' | |
if dataset_num_proc is None: | |
from multiprocessing import cpu_count | |
dataset_num_proc = cpu_count() | |
super().__init__( | |
output_dir = output_dir, | |
overwrite_output_dir = overwrite_output_dir, | |
do_train = do_train, | |
do_eval = do_eval, | |
do_predict = do_predict, | |
eval_strategy = eval_strategy, | |
prediction_loss_only = prediction_loss_only, | |
per_device_train_batch_size = per_device_train_batch_size, | |
per_device_eval_batch_size = per_device_eval_batch_size, | |
per_gpu_train_batch_size = per_gpu_train_batch_size, | |
per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
gradient_accumulation_steps = gradient_accumulation_steps, | |
eval_accumulation_steps = eval_accumulation_steps, | |
eval_delay = eval_delay, | |
torch_empty_cache_steps = torch_empty_cache_steps, | |
learning_rate = learning_rate, | |
weight_decay = weight_decay, | |
adam_beta1 = adam_beta1, | |
adam_beta2 = adam_beta2, | |
adam_epsilon = adam_epsilon, | |
max_grad_norm = max_grad_norm, | |
num_train_epochs = num_train_epochs, | |
max_steps = max_steps, | |
lr_scheduler_type = lr_scheduler_type, | |
warmup_ratio = warmup_ratio, | |
warmup_steps = warmup_steps, | |
log_level = log_level, | |
log_level_replica = log_level_replica, | |
log_on_each_node = log_on_each_node, | |
logging_dir = logging_dir, | |
logging_strategy = logging_strategy, | |
logging_first_step = logging_first_step, | |
logging_steps = logging_steps, | |
logging_nan_inf_filter = logging_nan_inf_filter, | |
save_strategy = save_strategy, | |
save_steps = save_steps, | |
save_total_limit = save_total_limit, | |
save_safetensors = save_safetensors, | |
save_on_each_node = save_on_each_node, | |
save_only_model = save_only_model, | |
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
no_cuda = no_cuda, | |
use_cpu = use_cpu, | |
use_mps_device = use_mps_device, | |
seed = seed, | |
data_seed = data_seed, | |
jit_mode_eval = jit_mode_eval, | |
use_ipex = use_ipex, | |
bf16 = bf16, | |
fp16 = fp16, | |
fp16_opt_level = fp16_opt_level, | |
half_precision_backend = half_precision_backend, | |
bf16_full_eval = bf16_full_eval, | |
fp16_full_eval = fp16_full_eval, | |
tf32 = tf32, | |
local_rank = local_rank, | |
ddp_backend = ddp_backend, | |
tpu_num_cores = tpu_num_cores, | |
tpu_metrics_debug = tpu_metrics_debug, | |
debug = debug, | |
dataloader_drop_last = dataloader_drop_last, | |
eval_steps = eval_steps, | |
dataloader_num_workers = dataloader_num_workers, | |
dataloader_prefetch_factor = dataloader_prefetch_factor, | |
past_index = past_index, | |
run_name = run_name, | |
disable_tqdm = disable_tqdm, | |
remove_unused_columns = remove_unused_columns, | |
label_names = label_names, | |
load_best_model_at_end = load_best_model_at_end, | |
metric_for_best_model = metric_for_best_model, | |
greater_is_better = greater_is_better, | |
ignore_data_skip = ignore_data_skip, | |
fsdp = fsdp, | |
fsdp_min_num_params = fsdp_min_num_params, | |
fsdp_config = fsdp_config, | |
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
accelerator_config = accelerator_config, | |
deepspeed = deepspeed, | |
label_smoothing_factor = label_smoothing_factor, | |
optim = optim, | |
optim_args = optim_args, | |
adafactor = adafactor, | |
group_by_length = group_by_length, | |
length_column_name = length_column_name, | |
report_to = report_to, | |
ddp_find_unused_parameters = ddp_find_unused_parameters, | |
ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
ddp_broadcast_buffers = ddp_broadcast_buffers, | |
dataloader_pin_memory = dataloader_pin_memory, | |
dataloader_persistent_workers = dataloader_persistent_workers, | |
skip_memory_metrics = skip_memory_metrics, | |
use_legacy_prediction_loop = use_legacy_prediction_loop, | |
push_to_hub = push_to_hub, | |
resume_from_checkpoint = resume_from_checkpoint, | |
hub_model_id = hub_model_id, | |
hub_strategy = hub_strategy, | |
hub_token = hub_token, | |
hub_private_repo = hub_private_repo, | |
hub_always_push = hub_always_push, | |
gradient_checkpointing = gradient_checkpointing, | |
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
include_inputs_for_metrics = include_inputs_for_metrics, | |
eval_do_concat_batches = eval_do_concat_batches, | |
fp16_backend = fp16_backend, | |
evaluation_strategy = evaluation_strategy, | |
push_to_hub_model_id = push_to_hub_model_id, | |
push_to_hub_organization = push_to_hub_organization, | |
push_to_hub_token = push_to_hub_token, | |
mp_parameters = mp_parameters, | |
auto_find_batch_size = auto_find_batch_size, | |
full_determinism = full_determinism, | |
torchdynamo = torchdynamo, | |
ray_scope = ray_scope, | |
ddp_timeout = ddp_timeout, | |
torch_compile = torch_compile, | |
torch_compile_backend = torch_compile_backend, | |
torch_compile_mode = torch_compile_mode, | |
dispatch_batches = dispatch_batches, | |
split_batches = split_batches, | |
include_tokens_per_second = include_tokens_per_second, | |
include_num_input_tokens_seen = include_num_input_tokens_seen, | |
neftune_noise_alpha = neftune_noise_alpha, | |
optim_target_modules = optim_target_modules, | |
batch_eval_metrics = batch_eval_metrics, | |
eval_on_start = eval_on_start, | |
use_liger_kernel = use_liger_kernel, | |
eval_use_gather_object = eval_use_gather_object, | |
average_tokens_across_devices = average_tokens_across_devices, | |
model_init_kwargs = model_init_kwargs, | |
use_liger = use_liger, | |
dataset_text_field = dataset_text_field, | |
dataset_kwargs = dataset_kwargs, | |
dataset_num_proc = dataset_num_proc, | |
max_seq_length = max_seq_length, | |
packing = packing, | |
eval_packing = eval_packing, | |
dataset_batch_size = dataset_batch_size, | |
num_of_sequences = num_of_sequences, | |
chars_per_token = chars_per_token,**kwargs) | |
self.vllm_sampling_params = vllm_sampling_params | |
self.unsloth_num_chunks = unsloth_num_chunks | |
pass | |
class _UnslothSFTTrainer(Trainer): | |
"""""" | |
_tag_names = ["trl", "sft"] | |
def __init__( | |
self, | |
model: Union[str, nn.Module, PreTrainedModel], | |
args: Optional[Union[SFTConfig, TrainingArguments]] = None, | |
data_collator: Optional[DataCollator] = None, # type: ignore | |
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, | |
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
processing_class: Optional[ | |
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
] = None, | |
compute_loss_func: Optional[Callable] = None, | |
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, | |
callbacks: Optional[list[TrainerCallback]] = None, | |
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), | |
optimizer_cls_and_kwargs: Optional[tuple[Type[torch.optim.Optimizer], dict[str, Any]]] = None, | |
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
peft_config: Optional["PeftConfig"] = None, | |
formatting_func: Optional[Union[Callable[[dict], str], Callable[[dict], list[str]]]] = None, | |
): | |
# Args | |
if args is None: | |
model_name = model if isinstance(model, str) else model.config._name_or_path | |
model_name = model_name.split("/")[-1] | |
args = SFTConfig(f"{model_name}-SFT") | |
elif isinstance(args, TrainingArguments) and not isinstance(args, SFTConfig): | |
dict_args = args.to_dict() | |
dict_args["hub_token"] = args.hub_token # to_dict hides the hub_token | |
dict_args.pop("push_to_hub_token") | |
args = SFTConfig(**dict_args) | |
# Model | |
if args.model_init_kwargs is not None and not isinstance(model, str): | |
warnings.warn( | |
"You passed model_init_kwargs to the `SFTConfig`, but your model is already instantiated. " | |
"The `model_init_kwargs` will be ignored." | |
) | |
if isinstance(model, str): | |
model = self._create_model_from_path(model, args) | |
# PEFT configuration and model wrapping | |
if False: | |
model = self._prepare_peft_model(model, peft_config, args) | |
# Handle the tokenizer | |
if processing_class is None: | |
processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path) | |
if processing_class.pad_token is None: | |
processing_class.pad_token = processing_class.eos_token # required for padding when collating data | |
# Dataset | |
preprocess_dataset = args.dataset_kwargs is None or not args.dataset_kwargs.get("skip_prepare_dataset", False) | |
if preprocess_dataset: | |
train_dataset = self._prepare_dataset( | |
train_dataset, processing_class, args, args.packing, formatting_func, "train" | |
) | |
if eval_dataset is not None: | |
packing = args.packing if args.eval_packing is None else args.eval_packing | |
if isinstance(eval_dataset, dict): | |
eval_dataset = { | |
key: self._prepare_dataset(dataset, processing_class, args, packing, formatting_func, key) | |
for key, dataset in eval_dataset.items() | |
} | |
else: | |
eval_dataset = self._prepare_dataset( | |
eval_dataset, processing_class, args, packing, formatting_func, "eval" | |
) | |
# Data collator | |
if data_collator is None: | |
data_collator = DataCollatorForLanguageModeling(tokenizer=processing_class, mlm=False) | |
# Initialize the metrics | |
self._metrics = defaultdict(list) | |
# Initialize the Trainer. Parent class will handle: | |
# - DeepSpeed configuration (through create_accelerator_and_postprocess) | |
# - FSDP setup | |
# - Distributed training setup | |
# - Optimizer and scheduler creation | |
# Some arguments are only available for transformers>=4.47.0. Can be removed when the min version is bumped. | |
super_init_kwargs = {} | |
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): | |
super_init_kwargs["optimizer_cls_and_kwargs"] = optimizer_cls_and_kwargs | |
else: | |
if optimizer_cls_and_kwargs is not None: | |
warnings.warn( | |
"The `optimizer_cls_and_kwargs` argument is only available for `transformers>=4.47.0`. " | |
"The default optimizer will be used. " | |
"Remove the `optimizer_cls_and_kwargs` or upgrade to `transformers>=4.47.0`." | |
) | |
super().__init__( | |
model=model, | |
args=args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
processing_class=processing_class, | |
compute_loss_func=compute_loss_func, | |
compute_metrics=compute_metrics, | |
callbacks=callbacks, | |
optimizers=optimizers, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
**super_init_kwargs, | |
) | |
# Add tags for models that have been loaded with the correct transformers version | |
if hasattr(self.model, "add_model_tags"): | |
self.model.add_model_tags(self._tag_names) | |
def _create_model_from_path(self, model_path: str, args: SFTConfig) -> PreTrainedModel: | |
"""Creates a model from a path or model identifier.""" | |
model_init_kwargs = args.model_init_kwargs or {} | |
# Handle torch dtype | |
torch_dtype = model_init_kwargs.get("torch_dtype") | |
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None: | |
pass # torch_dtype is already a torch.dtype or "auto" or None | |
elif isinstance(torch_dtype, str): # it's a str, but not "auto" | |
torch_dtype = getattr(torch, torch_dtype) | |
model_init_kwargs["torch_dtype"] = torch_dtype | |
else: | |
raise ValueError( | |
"Invalid `torch_dtype` passed to `SFTConfig`. Expected either 'auto' or a string representing " | |
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}." | |
) | |
# Disable caching if gradient checkpointing is enabled (not supported) | |
if args.gradient_checkpointing: | |
model_init_kwargs["use_cache"] = False | |
# Create model | |
if args.use_liger: | |
if not is_liger_kernel_available(): | |
raise ImportError("Please install Liger-kernel for use_liger=True") | |
model = AutoLigerKernelForCausalLM.from_pretrained(model_path, **model_init_kwargs) | |
else: | |
model = AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs) | |
return model | |
def _prepare_peft_model(self, model: PreTrainedModel, peft_config: Any, args: SFTConfig) -> PreTrainedModel: | |
"""Prepares a model for PEFT training.""" | |
if not is_peft_available(): | |
raise ImportError("To use PeftModel, you need to install the `peft` library.") | |
if not isinstance(peft_config, PeftConfig): | |
raise ValueError( | |
f"Expected PeftConfig object but got {type(peft_config)}. If you want to use the PeftModel, you need " | |
"to pass a PeftConfig object to the SFTTrainer." | |
) | |
if isinstance(model, PeftModel): | |
return model | |
# Handle quantized models (QLoRA) | |
is_qlora = getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False) | |
is_sharded_qlora = False | |
if getattr(model, "is_loaded_in_4bit", False): | |
# Check if model is sharded (FSDP/DS-Zero3) | |
for _, param in model.named_parameters(): | |
if param.__class__.__name__ == "Params4bit": | |
is_sharded_qlora = param.data.device.type in {"cpu", "meta"} | |
break | |
# Prepare model for kbit training if needed | |
if is_qlora and not is_sharded_qlora: | |
model = self._prepare_model_for_kbit_training(model, args) | |
# Disable gradient checkpointing as it's handled by prepare_model_for_kbit_training | |
args = dataclasses.replace(args, gradient_checkpointing=False) | |
elif args.gradient_checkpointing: | |
model = self._enable_gradient_checkpointing(model, args) | |
# Create PEFT model | |
if ( | |
version.parse(peft.__version__) >= version.parse("0.12") # autocast_adapter_dtype introduced in 0.12 | |
and getattr(model, "is_loaded_in_4bit", False) | |
and is_sharded_qlora | |
): | |
model = get_peft_model(model, peft_config, autocast_adapter_dtype=False) | |
else: | |
model = get_peft_model(model, peft_config) | |
# Handle bf16 casting for 4-bit models | |
if args.bf16 and getattr(model, "is_loaded_in_4bit", False) and not is_sharded_qlora: | |
peft_module_casting_to_bf16(model) | |
return model | |
def _prepare_model_for_kbit_training(self, model: PreTrainedModel, args: SFTConfig) -> PreTrainedModel: | |
"""Prepares a quantized model for kbit training.""" | |
prepare_model_kwargs = { | |
"use_gradient_checkpointing": args.gradient_checkpointing, | |
"gradient_checkpointing_kwargs": args.gradient_checkpointing_kwargs or {}, | |
} | |
return prepare_model_for_kbit_training(model, **prepare_model_kwargs) | |
def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: SFTConfig) -> PreTrainedModel: | |
"""Enables gradient checkpointing for the model.""" | |
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {} | |
use_reentrant = ( | |
"use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"] | |
) | |
if use_reentrant: | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
return model | |
def _prepare_dataset( | |
self, | |
dataset: Union[Dataset, IterableDataset], | |
processing_class, | |
args, | |
packing: bool, | |
formatting_func: Optional[Callable[[dict], str]], | |
dataset_name: str, | |
) -> Union[Dataset, IterableDataset]: | |
# All Unsloth Zoo code licensed under LGPLv3 | |
if isinstance(dataset, ConstantLengthDataset): return dataset | |
map_kwargs = {} | |
use_desc = isinstance(dataset, Dataset) | |
is_vlm = hasattr(processing_class, "tokenizer") | |
tokenizer = processing_class | |
if is_vlm: tokenizer = processing_class.tokenizer | |
# Get max length | |
max_seq_length = getattr(args, "max_length", 0) | |
if max_seq_length == 0: max_seq_length = getattr(args, "max_seq_length", 0) | |
if max_seq_length == 0: max_seq_length = getattr(self, "max_seq_length", 0) | |
if max_seq_length == 0: max_seq_length = getattr(self, "max_seq", 0) | |
if max_seq_length == 0: raise RuntimeError("Unsloth: max_seq_length is 0! Please specify one!") | |
dataset_text_field = getattr(args, "dataset_text_field", "text") | |
do_truncation = max_seq_length != 0 | |
do_formatting_func = False | |
do_tokenize = True | |
# Get correct column names | |
column_names = set(next(iter(dataset)).keys()) | |
used_column_names = ["input_ids"] | |
if "attention_mask" in column_names: | |
used_column_names.append("attention_mask") | |
# Check if already tokenized so skip | |
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
if "labels" in column_names: | |
# Most likely forgot data collator! | |
if is_vlm and not hasattr(tokenizer, "pad"): | |
# Check if processing_class has a .pad, if not, use tokenizer.tokenizer | |
raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!") | |
self.data_collator = DataCollatorForSeq2Seq(tokenizer) | |
used_column_names.append("labels") | |
do_tokenize = False | |
elif "input_ids" in column_names: | |
# Skip dataset prep, and set data collator | |
if is_vlm and not hasattr(tokenizer, "pad"): | |
# Check if processing_class has a .pad, if not, use tokenizer.tokenizer | |
raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!") | |
self.data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False) | |
do_tokenize = False | |
elif dataset_text_field not in column_names: | |
do_formatting_func = True | |
if formatting_func is None: | |
raise RuntimeError("Unsloth: You must specify a `formatting_func`") | |
pass | |
if do_tokenize: | |
# Check double BOS tokens | |
if do_formatting_func: | |
test_text = formatting_func(dataset[0]) | |
if not isinstance(test_text, list): | |
raise ValueError( | |
"Unsloth: The `formatting_func` should return a list of processed strings." | |
) | |
test_text = test_text[0] | |
else: | |
test_text = dataset[0][dataset_text_field] | |
# Get chat template | |
chat_template = getattr(processing_class, 'chat_template', '') | |
if chat_template == '' and is_vlm: | |
chat_template = getattr(tokenizer, 'chat_template', '') | |
if chat_template is None: | |
chat_template = '' | |
# Get bos_token | |
add_special_tokens = True | |
bos_token_1 = getattr(processing_class, 'bos_token', None) | |
bos_token_2 = getattr(tokenizer, 'bos_token', None) | |
bos_token = bos_token_1 or bos_token_2 | |
if bos_token is not None: | |
if test_text.startswith(bos_token) or bos_token in chat_template: | |
add_special_tokens = False | |
print("Unsloth: We found double BOS tokens - we shall remove one automatically.") | |
pass | |
# Create tokenize function | |
def _tokenize(example): | |
return tokenizer( | |
example[dataset_text_field] if not do_formatting_func else formatting_func(example), | |
truncation = do_truncation, | |
max_length = max_seq_length, | |
return_token_type_ids = False, | |
add_special_tokens = add_special_tokens, | |
) | |
pass | |
map_kwargs["num_proc"] = getattr(args, "dataset_num_proc", 2) | |
if use_desc: map_kwargs["desc"] = f'Unsloth: Tokenizing ["{dataset_text_field}"]' | |
dataset = dataset.map(_tokenize, batched = True, **map_kwargs) | |
# If VLM, switch data collator since .pad is needed! | |
if is_vlm and not hasattr(processing_class, "pad"): | |
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False) | |
self.data_collator = data_collator | |
pass | |
pass | |
if packing: | |
print("Unsloth: Hugging Face's packing is currently buggy - we're disabling it for now!") | |
return dataset | |
if max_seq_length == 0: | |
raise ValueError("When packing is enabled, `max_seq_length` can't be `None`.") | |
if use_desc: map_kwargs["desc"] = f"Unsloth: Packing {dataset_name} dataset" | |
dataset = dataset.select_columns(used_column_names).map( | |
pack_examples, | |
batched = True, | |
fn_kwargs = {"seq_length": max_seq_length,}, | |
**map_kwargs, | |
) | |
pass | |
return dataset | |
def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None): | |
outputs = super().compute_loss( | |
model, | |
inputs, | |
return_outputs = return_outputs, | |
num_items_in_batch = num_items_in_batch, | |
) | |
return outputs | |
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: | |
metrics = {key: sum(val) / len(val) for key, val in self._metrics.items()} # average the metrics | |
# This method can be called both in training and evaluation. When called in evaluation, the keys in `logs` | |
# start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format. | |
if next(iter(logs.keys())).startswith("eval_"): | |
metrics = {f"eval_{key}": val for key, val in metrics.items()} | |
logs = {**logs, **metrics} | |
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): | |
super().log(logs, start_time) | |
else: # transformers<=4.46 | |
super().log(logs) | |
self._metrics.clear() | |
def create_model_card( | |
self, | |
model_name: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
tags: Union[str, list[str], None] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
model_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the model. | |
dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the dataset used for training. | |
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
Tags to be associated with the model card. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
base_model = self.model.config._name_or_path | |
else: | |
base_model = None | |
tags = tags or [] | |
if isinstance(tags, str): | |
tags = [tags] | |
if hasattr(self.model.config, "unsloth_version"): | |
tags.append("unsloth") | |
model_card = generate_model_card( | |
base_model=base_model, | |
model_name=model_name, | |
hub_model_id=self.hub_model_id, | |
dataset_name=dataset_name, | |
tags=tags, | |
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
comet_url=get_comet_experiment_url(), | |
trainer_name="SFT", | |
) | |
model_card.save(os.path.join(self.args.output_dir, "README.md")) | |
class UnslothSFTTrainer(_UnslothSFTTrainer): | |
""" | |
Trainer for Supervised Fine-Tuning (SFT) method. | |
This class is a wrapper around the [`transformers.Trainer`] class and inherits all of its attributes and methods. | |
Example: | |
```python | |
from datasets import load_dataset | |
from trl import SFTTrainer | |
dataset = load_dataset("roneneldan/TinyStories", split="train[:1%]") | |
trainer = SFTTrainer(model="Qwen/Qwen2-0.5B-Instruct", train_dataset=dataset) | |
trainer.train() | |
``` | |
Args: | |
model (`Union[str, PreTrainedModel]`): | |
Model to be trained. Can be either: | |
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or | |
a path to a *directory* containing model weights saved using | |
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is | |
loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments | |
in `args.model_init_kwargs`. | |
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. | |
args ([`SFTConfig`], *optional*, defaults to `None`): | |
Configuration for this trainer. If `None`, a default configuration is used. | |
data_collator (`DataCollator`, *optional*): | |
Function to use to form a batch from a list of elements of the prcessed `train_dataset` or `eval_dataset`. | |
Will default to [`~transformers.default_data_collator`] if no `processing_class` is provided, an instance | |
of [`~transformers.DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or | |
tokenizer. | |
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): | |
Dataset to use for training. SFT supports both [language modeling](#language-modeling) type and | |
[prompt-completion](#prompt-completion) type. The format of the samples can be either: | |
- [Standard](dataset_formats#standard): Each sample contains plain text. | |
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role | |
and content). | |
The trainer also supports processed datasets (tokenized) as long as they contain an `input_ids` field. | |
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): | |
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. | |
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`): | |
Processing class used to process the data. If `None`, the processing class is loaded from the model's name | |
with [`~transformers.AutoTokenizer.from_pretrained`]. | |
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`): | |
List of callbacks to customize the training loop. Will add those to the list of default callbacks | |
detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback). | |
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] | |
method. | |
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): | |
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your | |
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. | |
optimizer_cls_and_kwargs (`Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*, defaults to `None`): | |
A tuple containing the optimizer class and keyword arguments to use. | |
Overrides `optim` and `optim_args` in `args`. Incompatible with the `optimizers` argument. | |
Unlike `optimizers`, this argument avoids the need to place model parameters on the correct devices before initializing the Trainer. | |
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*, defaults to `None`): | |
A function that preprocess the logits right before caching them at each evaluation step. Must take two | |
tensors, the logits and the labels, and return the logits once processed as desired. The modifications made | |
by this function will be reflected in the predictions received by `compute_metrics`. | |
Note that the labels (second parameter) will be `None` if the dataset does not have them. | |
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`): | |
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. | |
formatting_func (`Optional[Callable]`): | |
Formatting function applied to the dataset before tokenization. | |
""" | |
def __init__( | |
self, | |
model, | |
args = None, | |
data_collator = None, | |
train_dataset = None, | |
eval_dataset = None, | |
processing_class = None, | |
compute_loss_func = None, | |
compute_metrics = None, | |
callbacks = None, | |
optimizer_cls_and_kwargs = None, | |
preprocess_logits_for_metrics = None, | |
peft_config = None, | |
formatting_func = None, | |
**kwargs | |
): | |
if args is None: args = UnslothSFTConfig() | |
use_bf16 = getattr(args, 'bf16', False) | |
use_fp16 = getattr(args, 'fp16', False) | |
force_float32 = False | |
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': | |
print('Unsloth: Switching to float32 training since model cannot work with float16') | |
force_float32 = True | |
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
dtype = getattr(model.config, 'torch_dtype', None) | |
if dtype is None: dtype = model.get_input_embeddings().dtype | |
from unsloth_zoo.utils import _get_dtype | |
dtype = _get_dtype(dtype) | |
float16 = dtype == torch.float16 | |
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
if force_float32: | |
args.fp16 = False | |
args.bf16 = False | |
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
args.fp16 = float16 | |
args.bf16 = not float16 | |
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
args.eval_strategy = 'steps' | |
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
if ga_steps is not None and ga_steps > 1: | |
from transformers import __version__ as transformers_version | |
if Version(transformers_version) <= Version('4.45.2'): | |
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
if getattr(args, 'eval_strategy', 'no') != 'no': | |
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
if force_float32: | |
args.bf16_full_eval = False | |
args.fp16_full_eval = False | |
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
args.bf16_full_eval = True | |
args.fp16_full_eval = False | |
elif not bf16_full_eval and not fp16_full_eval: | |
args.bf16_full_eval = args.bf16 | |
args.fp16_full_eval = args.fp16 | |
_output_logits = False | |
if locals().get('compute_metrics', None) is not None: _output_logits = True | |
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
if _output_logits: | |
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
pass | |
else: | |
model_max_seq_length = getattr(model, 'max_seq_length', None) | |
args_max_seq_length = getattr(args, 'max_seq_length', None) | |
if args_max_seq_length is None and model_max_seq_length is not None: | |
max_seq_length = model.max_seq_length | |
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
if model is not None and hasattr(model, 'for_training'): | |
model.for_training() | |
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
if 'processing_class' in locals(): | |
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer | |
from unsloth_zoo.vision_utils import UnslothVisionDataCollator | |
if not isinstance(data_collator, UnslothVisionDataCollator): | |
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: | |
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) | |
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: | |
data_collator = DataCollatorForSeq2Seq(__tokenizer) | |
else: | |
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False | |
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' | |
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} | |
if not isinstance(data_collator, UnslothVisionDataCollator): | |
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): | |
if isinstance(data_collator, DataCollatorForSeq2Seq): | |
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) | |
else: | |
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) | |
other_metrics = [] | |
from unsloth_zoo.logging_utils import PatchRLStatistics | |
PatchRLStatistics('sft_trainer', other_metrics) | |
IGNORED_TOKENIZER_NAMES = os.environ.get('UNSLOTH_IGNORED_TOKENIZER_NAMES', '').split('\n') | |
from unsloth_zoo.tokenizer_utils import fix_untrained_tokens | |
from unsloth_zoo.training_utils import fix_zero_training_loss | |
if 'tokenizer' not in locals(): tokenizer = processing_class | |
fix_untrained_tokens(model, tokenizer, train_dataset, IGNORED_TOKENIZER_NAMES, eps = 1e-16) | |
fix_zero_training_loss(model, tokenizer, train_dataset) | |
super().__init__( | |
model = model, | |
args = args, | |
data_collator = data_collator, | |
train_dataset = train_dataset, | |
eval_dataset = eval_dataset, | |
processing_class = processing_class, | |
compute_loss_func = compute_loss_func, | |
compute_metrics = compute_metrics, | |
callbacks = callbacks, | |
optimizer_cls_and_kwargs = optimizer_cls_and_kwargs, | |
preprocess_logits_for_metrics = preprocess_logits_for_metrics, | |
peft_config = peft_config, | |
formatting_func = formatting_func,**kwargs) | |
if hasattr(self, 'neftune_hook_handle'): | |
self.neftune_hook_handle.remove() | |
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
if getattr(args, 'neftune_noise_alpha', None) is not None: | |
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
pass | |
pass | |