import os import tempfile import numpy as np import torch from fastapi import FastAPI, File, UploadFile from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline os.environ["TRANSFORMERS_CACHE"] = "/app/cache" app = FastAPI( title = "Whisper API", redirect_slashes=False ) # Device configuration device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Load Whisper model model_id = "openai/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ).to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device ) @app.get("/") async def root(): return {"message": "Welcome to Whisper API!"} @app.post("/transcribe/") async def transcribe_audio(file: UploadFile = File(...)): try: # Save the uploaded file temporarily with tempfile.NamedTemporaryFile(delete=True, suffix=".wav") as temp_audio: temp_audio.write(await file.read()) temp_audio.flush() # Transcribe the audio result = pipe(temp_audio.name, return_timestamps="word") return {"transcription": result["chunks"]} except Exception as e: return {"error": str(e)}