Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,12 @@ import os
|
|
2 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
|
3 |
|
4 |
import torch
|
5 |
-
from fastapi import FastAPI
|
6 |
-
from pydantic import BaseModel
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
import gradio as gr
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
model_id = "sberbank-ai/rugpt3medium_based_on_gpt2"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
@@ -24,7 +24,6 @@ context = (
|
|
24 |
def respond(message, history=None):
|
25 |
prompt = f"Прочитай текст и ответь на вопрос:\n\n{context}\n\nВопрос: {message}\nОтвет:"
|
26 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
27 |
-
|
28 |
with torch.no_grad():
|
29 |
output_ids = model.generate(
|
30 |
input_ids,
|
@@ -34,7 +33,6 @@ def respond(message, history=None):
|
|
34 |
do_sample=True,
|
35 |
pad_token_id=tokenizer.eos_token_id
|
36 |
)
|
37 |
-
|
38 |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
39 |
if "Ответ:" in output:
|
40 |
answer = output.split("Ответ:")[-1].strip()
|
@@ -42,10 +40,10 @@ def respond(message, history=None):
|
|
42 |
answer = output[len(prompt):].strip()
|
43 |
return answer
|
44 |
|
45 |
-
#
|
46 |
chat = gr.ChatInterface(fn=respond, title="Иннополис Бот")
|
47 |
|
48 |
-
#
|
49 |
app = FastAPI()
|
50 |
|
51 |
class QuestionRequest(BaseModel):
|
@@ -53,10 +51,7 @@ class QuestionRequest(BaseModel):
|
|
53 |
|
54 |
@app.post("/ask")
|
55 |
def ask(request: QuestionRequest):
|
56 |
-
answer
|
57 |
-
return {"answer": answer}
|
58 |
-
|
59 |
-
# --- Подключаем FastAPI к Gradio ---
|
60 |
-
gr.mount_gradio_app(app, chat, path="/")
|
61 |
|
62 |
-
#
|
|
|
|
2 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
|
3 |
|
4 |
import torch
|
|
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
import gradio as gr
|
7 |
+
from fastapi import FastAPI
|
8 |
+
from pydantic import BaseModel
|
9 |
|
10 |
+
# Модель
|
11 |
model_id = "sberbank-ai/rugpt3medium_based_on_gpt2"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
24 |
def respond(message, history=None):
|
25 |
prompt = f"Прочитай текст и ответь на вопрос:\n\n{context}\n\nВопрос: {message}\nОтвет:"
|
26 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
|
|
27 |
with torch.no_grad():
|
28 |
output_ids = model.generate(
|
29 |
input_ids,
|
|
|
33 |
do_sample=True,
|
34 |
pad_token_id=tokenizer.eos_token_id
|
35 |
)
|
|
|
36 |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
37 |
if "Ответ:" in output:
|
38 |
answer = output.split("Ответ:")[-1].strip()
|
|
|
40 |
answer = output[len(prompt):].strip()
|
41 |
return answer
|
42 |
|
43 |
+
# Gradio интерфейс
|
44 |
chat = gr.ChatInterface(fn=respond, title="Иннополис Бот")
|
45 |
|
46 |
+
# API
|
47 |
app = FastAPI()
|
48 |
|
49 |
class QuestionRequest(BaseModel):
|
|
|
51 |
|
52 |
@app.post("/ask")
|
53 |
def ask(request: QuestionRequest):
|
54 |
+
return {"answer": respond(request.question)}
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Важно: экспорт для Hugging Face
|
57 |
+
demo = gr.mount_gradio_app(app, chat, path="/")
|