Spaces:
Runtime error
Runtime error
File size: 17,143 Bytes
55574cc 62d3ca7 55574cc 354bf5f 460480a 55574cc 354bf5f e570bda 55574cc d9c493b 55574cc d9c493b 55574cc d9c493b 55574cc d9c493b 55574cc e570bda 55574cc e570bda 55574cc e570bda 55574cc e570bda 55574cc e570bda 55574cc e570bda 55574cc e570bda 55574cc e570bda 55574cc e570bda 55574cc 62d3ca7 55574cc e570bda 55574cc 62d3ca7 55574cc 62d3ca7 55574cc 62d3ca7 55574cc 354bf5f 62d3ca7 55574cc 87f81fb 62d3ca7 55574cc 62d3ca7 55574cc 62d3ca7 55574cc 62d3ca7 55574cc 62d3ca7 55574cc 87f81fb 55574cc 354bf5f 55574cc 62d3ca7 55574cc 354bf5f 55574cc 354bf5f 55574cc 354bf5f 55574cc 354bf5f 55574cc 354bf5f 55574cc 354bf5f 55574cc 354bf5f 55574cc 354bf5f 55574cc 354bf5f 46a6686 62d3ca7 354bf5f 62d3ca7 ec59101 354bf5f 55574cc 62d3ca7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
*NetCom β WooCommerce CSV/Excel Processor*
Robust edition β catches and logs every recoverable error so one failure never
brings the whole pipeline down. Only small, surgical changes were made.
"""
import gradio as gr
import pandas as pd
import tempfile
import os, sys, json, re, hashlib, asyncio, aiohttp, traceback
from io import BytesIO
from pathlib import Path
from functools import lru_cache
import openai
import gradio_client.utils
# ββββββββββββββββββββββββββββββ HELPERS ββββββββββββββββββββββββββββββ
def _log(err: Exception, msg: str = ""):
"""Log errors without stopping execution."""
print(f"[WARN] {msg}: {err}", file=sys.stderr)
traceback.print_exception(err)
# Patch: tolerate bad JSON-schemas produced by some OpenAI tools
_original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
def _fixed_json_schema_to_python_type(schema, defs=None):
try:
if isinstance(schema, bool):
return "any"
return _original_json_schema_to_python_type(schema, defs)
except Exception as e: # last-chance fallback
_log(e, "json_schema_to_python_type failed")
return "any"
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type
# ββββββββββββββββββββββββββββββ DISK CACHE ββββββββββββββββββββββββββββββ
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)
def _cache_path(prompt): # deterministic path
return CACHE_DIR / f"{hashlib.md5(prompt.encode()).hexdigest()}.json"
def get_cached_response(prompt):
try:
p = _cache_path(prompt)
if p.exists():
return json.loads(p.read_text(encoding="utf-8"))["response"]
except Exception as e:
_log(e, "reading cache")
return None
def cache_response(prompt, response):
try:
_cache_path(prompt).write_text(
json.dumps({"prompt": prompt, "response": response}), encoding="utf-8"
)
except Exception as e:
_log(e, "writing cache")
# ββββββββββββββββββββββββββββββ OPENAI ββββββββββββββββββββββββββββββ
async def _call_openai(client, prompt):
"""Single protected OpenAI call."""
try:
rsp = await client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0,
)
return rsp.choices[0].message.content
except Exception as e:
_log(e, "OpenAI error")
return f"Error: {e}"
async def process_text_batch_async(client, prompts):
"""Return results in original order, resilient to any error."""
results, tasks = {}, []
for p in prompts:
cached = get_cached_response(p)
if cached is not None:
results[p] = cached
else:
tasks.append(asyncio.create_task(_call_openai(client, p)))
for prompt, task in zip([p for p in prompts if p not in results], tasks):
try:
res = await task
except Exception as e:
_log(e, "async OpenAI task")
res = f"Error: {e}"
cache_response(prompt, res)
results[prompt] = res
return [results[p] for p in prompts]
async def process_text_with_ai_async(texts, instruction):
if not texts:
return []
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
batch_size, out = 500, []
for i in range(0, len(texts), batch_size):
prompts = [f"{instruction}\n\nText: {t}" for t in texts[i : i + batch_size]]
out.extend(await process_text_batch_async(client, prompts))
return out
# ββββββββββββββββββββββββββββββ MAIN TRANSFORM ββββββββββββββββββββββββββββββ
def process_woocommerce_data_in_memory(upload):
"""Convert NetCom β Woo CSV/XLSX; every stage guarded."""
try:
# brand β logo mapping
brand_logo = {
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
"PMI": "/wp-content/uploads/2025/04/PMI.png",
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
}
default_prereq = (
"No specific prerequisites are required for this course. "
"Basic computer literacy and familiarity with fundamental concepts in the "
"subject area are recommended for the best learning experience."
)
# ---------------- I/O ----------------
ext = Path(upload.name).suffix.lower()
try:
if ext in {".xlsx", ".xls"}:
try:
df = pd.read_excel(upload.name, sheet_name="Active Schedules")
except Exception as e:
_log(e, "Excel read failed (falling back to first sheet)")
df = pd.read_excel(upload.name, sheet_name=0)
else: # CSV
try:
df = pd.read_csv(upload.name, encoding="latin1")
except Exception as e:
_log(e, "CSV read failed (trying utf-8)")
df = pd.read_csv(upload.name, encoding="utf-8", errors="ignore")
except Exception as e:
_log(e, "file read totally failed")
raise
df.columns = df.columns.str.strip()
# --------- column harmonisation (new vs old formats) ----------
rename_map = {
"Decription": "Description",
"description": "Description",
"Objectives": "Objectives",
"objectives": "Objectives",
"RequiredPrerequisite": "Required Prerequisite",
"Required Pre-requisite": "Required Prerequisite",
"RequiredPre-requisite": "Required Prerequisite",
}
df.rename(columns={k: v for k, v in rename_map.items() if k in df.columns}, inplace=True)
# duration if missing
if "Duration" not in df.columns:
try:
df["Duration"] = (
pd.to_datetime(df["Course End Date"]) - pd.to_datetime(df["Course Start Date"])
).dt.days.add(1)
except Exception as e:
_log(e, "duration calc failed")
df["Duration"] = ""
# ---------------- ASYNC AI ----------------
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
col_desc = "Description"
col_obj = "Objectives"
col_prereq = "Required Prerequisite"
try:
res = loop.run_until_complete(
asyncio.gather(
process_text_with_ai_async(
df[col_desc].fillna("").tolist(),
"Create a concise 250-character summary of this course description:",
),
process_text_with_ai_async(
df[col_desc].fillna("").tolist(),
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:",
),
process_text_with_ai_async(
df[col_obj].fillna("").tolist(),
"Format these objectives into a bullet list format with clean formatting. Start each bullet with 'β’ ':",
),
process_text_with_ai_async(
df["Outline"].fillna("").tolist(),
"Format this agenda into a bullet list format with clean formatting. Start each bullet with 'β’ ':",
),
)
)
except Exception as e:
_log(e, "async AI gather failed")
res = [[""] * len(df)] * 4
finally:
loop.close()
short_desc, long_desc, objectives, agendas = res
# prerequisites handled synchronously (tiny)
prereq_out = []
for p in df[col_prereq].fillna("").tolist():
if not p.strip():
prereq_out.append(default_prereq)
else:
try:
prereq_out.append(
asyncio.run(
process_text_with_ai_async(
[p],
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with 'β’ ':",
)
)[0]
)
except Exception as e:
_log(e, "prereq AI failed")
prereq_out.append(default_prereq)
# ---------------- DATAFRAME BUILD ----------------
try:
df["Short_Description"] = short_desc
df["Condensed_Description"] = long_desc
df["Formatted_Objectives"] = objectives
df["Formatted_Prerequisites"] = prereq_out
df["Formatted_Agenda"] = agendas
except Exception as e:
_log(e, "adding AI columns")
# 2. aggregate date/time
df = df.sort_values(["Course ID", "Course Start Date"])
date_agg = (
df.groupby("Course ID")["Course Start Date"]
.apply(lambda x: ",".join(x.astype(str).unique()))
.reset_index(name="Aggregated_Dates")
)
time_agg = (
df.groupby("Course ID")
.apply(
lambda d: ",".join(
f"{s}-{e} {tz}"
for s, e, tz in zip(
d["Course Start Time"], d["Course End Time"], d["Time Zone"]
)
)
)
.reset_index(name="Aggregated_Times")
)
parent = df.drop_duplicates(subset=["Course ID"]).merge(date_agg).merge(time_agg)
woo_parent_df = pd.DataFrame(
{
"Type": "variable",
"SKU": parent["Course ID"],
"Name": parent["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": parent["Short_Description"],
"Description": parent["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Regular price": parent["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": parent["Vendor"].map(brand_logo).fillna(""),
"Parent": "",
"Brands": parent["Vendor"],
"Attribute 1 name": "Date",
"Attribute 1 value(s)": parent["Aggregated_Dates"],
"Attribute 1 visible": "visible",
"Attribute 1 global": 1,
"Attribute 2 name": "Location",
"Attribute 2 value(s)": "Virtual",
"Attribute 2 visible": "visible",
"Attribute 2 global": 1,
"Attribute 3 name": "Time",
"Attribute 3 value(s)": parent["Aggregated_Times"],
"Attribute 3 visible": "visible",
"Attribute 3 global": 1,
"Meta: outline": parent["Formatted_Agenda"],
"Meta: days": parent["Duration"],
"Meta: location": "Virtual",
"Meta: overview": parent["Target Audience"],
"Meta: objectives": parent["Formatted_Objectives"],
"Meta: prerequisites": parent["Formatted_Prerequisites"],
"Meta: agenda": parent["Formatted_Agenda"],
}
)
woo_child_df = pd.DataFrame(
{
"Type": "variation, virtual",
"SKU": df["Course SID"],
"Name": df["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": df["Short_Description"],
"Description": df["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Regular price": df["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": df["Vendor"].map(brand_logo).fillna(""),
"Parent": df["Course ID"],
"Brands": df["Vendor"],
"Attribute 1 name": "Date",
"Attribute 1 value(s)": df["Course Start Date"],
"Attribute 1 visible": "visible",
"Attribute 1 global": 1,
"Attribute 2 name": "Location",
"Attribute 2 value(s)": "Virtual",
"Attribute 2 visible": "visible",
"Attribute 2 global": 1,
"Attribute 3 name": "Time",
"Attribute 3 value(s)": df.apply(
lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",
axis=1,
),
"Attribute 3 visible": "visible",
"Attribute 3 global": 1,
"Meta: outline": df["Formatted_Agenda"],
"Meta: days": df["Duration"],
"Meta: location": "Virtual",
"Meta: overview": df["Target Audience"],
"Meta: objectives": df["Formatted_Objectives"],
"Meta: prerequisites": df["Formatted_Prerequisites"],
"Meta: agenda": df["Formatted_Agenda"],
}
)
final_cols = [
"Type",
"SKU",
"Name",
"Published",
"Visibility in catalog",
"Short description",
"Description",
"Tax status",
"In stock?",
"Regular price",
"Categories",
"Images",
"Parent",
"Brands",
"Attribute 1 name",
"Attribute 1 value(s)",
"Attribute 1 visible",
"Attribute 1 global",
"Attribute 2 name",
"Attribute 2 value(s)",
"Attribute 2 visible",
"Attribute 2 global",
"Attribute 3 name",
"Attribute 3 value(s)",
"Attribute 3 visible",
"Attribute 3 global",
"Meta: outline",
"Meta: days",
"Meta: location",
"Meta: overview",
"Meta: objectives",
"Meta: prerequisites",
"Meta: agenda",
]
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)[
final_cols
]
buf = BytesIO()
woo_final_df.to_csv(buf, index=False, encoding="utf-8-sig")
buf.seek(0)
return buf
except Exception as e:
_log(e, "fatal transformation error")
err_buf = BytesIO()
pd.DataFrame({"error": [str(e)]}).to_csv(err_buf, index=False)
err_buf.seek(0)
return err_buf
# ββββββββββββββββββββββββββββββ GRADIO BINDINGS ββββββββββββββββββββββββββββββ
def process_file(file):
try:
out_io = process_woocommerce_data_in_memory(file)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
tmp.write(out_io.getvalue())
return tmp.name
except Exception as e:
_log(e, "top-level process_file")
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as tmp:
tmp.write(f"Processing failed:\n{e}".encode())
return tmp.name
interface = gr.Interface(
fn=process_file,
inputs=gr.File(label="Upload NetCom Schedule", file_types=[".csv", ".xlsx", ".xls"]),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom β WooCommerce CSV/Excel Processor",
description="Upload a NetCom Reseller Schedule CSV or XLSX to generate a WooCommerce-ready CSV.",
analytics_enabled=False,
)
if __name__ == "__main__": # run
if not os.getenv("OPENAI_API_KEY"):
print("[WARN] OPENAI_API_KEY not set; AI steps will error out.")
interface.launch()
|