File size: 9,723 Bytes
354bf5f
 
460480a
f86c87e
 
b0ead86
f86c87e
b0ead86
e570bda
b0ead86
f86c87e
d9c493b
b0ead86
 
90e73d9
 
 
 
 
 
 
b0ead86
90e73d9
 
b0ead86
f86c87e
d9c493b
90e73d9
d9c493b
b0ead86
f86c87e
b0ead86
d9c493b
90e73d9
b0ead86
f86c87e
90e73d9
 
f86c87e
90e73d9
e570bda
90e73d9
b0ead86
 
e570bda
90e73d9
b0ead86
90e73d9
b0ead86
 
 
90e73d9
 
 
 
 
b0ead86
90e73d9
 
b0ead86
90e73d9
 
 
 
 
 
 
 
 
e570bda
90e73d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0ead86
 
90e73d9
 
 
 
354bf5f
90e73d9
 
 
 
 
 
 
 
354bf5f
90e73d9
 
 
 
 
 
 
354bf5f
90e73d9
46a6686
90e73d9
354bf5f
b0ead86
90e73d9
ec59101
354bf5f
 
f86c87e
b0ead86
90e73d9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import pandas as pd
import tempfile
import os
import json
import hashlib
import asyncio
from io import BytesIO
from pathlib import Path
import openai
import gradio_client.utils

"""NetCom → WooCommerce transformer (Try 1 schema)
=================================================
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*

Fixes vs last run
-----------------
* Output written to a **temporary file path** (Gradio BytesIO bug fixed).
* **Excel upload** support.
* **Pandas future‑warning** silenced (`group_keys=False`).
"""

# -------- Gradio bool‑schema hot‑patch --------------------------------------
_original = gradio_client.utils._json_schema_to_python_type

def _fixed_json_schema_to_python_type(schema, defs=None):
    if isinstance(schema, bool):
        return "any"
    return _original(schema, defs)

gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type  # type: ignore

# -------- Tiny disk cache ----------------------------------------------------
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)

def _cache_path(p: str):
    return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"

def _get_cached(p: str):
    try:
        return json.loads(_cache_path(p).read_text("utf-8"))["response"]
    except Exception:
        return None

def _set_cache(p: str, r: str):
    try:
        _cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
    except Exception:
        pass

# -------- Async GPT helpers --------------------------------------------------
async def _gpt(client, prompt):
    c = _get_cached(prompt)
    if c is not None:
        return c
    try:
        msg = await client.chat.completions.create(model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0)
        text = msg.choices[0].message.content
    except Exception as e:
        text = f"Error: {e}"
    _set_cache(prompt, text)
    return text

async def _batch(lst, instr):
    out = ["" for _ in lst]; idx,prompts=[],[]
    for i,t in enumerate(lst):
        if isinstance(t,str) and t.strip(): idx.append(i); prompts.append(f"{instr}\n\nText: {t}")
    if not prompts: return out
    client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
    res = await asyncio.gather(*[_gpt(client,p) for p in prompts])
    for j,val in enumerate(res): out[idx[j]] = val
    return out

# -------- Core converter -----------------------------------------------------

def _read(path: str):
    return pd.read_excel(path) if path.lower().endswith((".xlsx",".xls")) else pd.read_csv(path, encoding="latin1")

def convert(path: str) -> BytesIO:
    logos = {"Amazon Web Services":"/wp-content/uploads/2025/04/aws.png","Cisco":"/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp","Microsoft":"/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png","Google Cloud":"/wp-content/uploads/2025/04/Google_Cloud.png","EC Council":"/wp-content/uploads/2025/04/Ec_Council.png","ITIL":"/wp-content/uploads/2025/04/ITIL.webp","PMI":"/wp-content/uploads/2025/04/PMI.png","Comptia":"/wp-content/uploads/2025/04/Comptia.png","Autodesk":"/wp-content/uploads/2025/04/autodesk.png","ISC2":"/wp-content/uploads/2025/04/ISC2.png","AICerts":"/wp-content/uploads/2025/04/aicerts-logo-1.png"}
    default_pre = "No specific prerequisites are required for this course. Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."

    df = _read(path); df.columns = df.columns.str.strip()
    c = lambda *o: next((x for x in o if x in df.columns), None)
    dcol, ocol, pcol, acol, dur, sid = c("Description","Decription"), c("Objectives","objectives"), c("RequiredPrerequisite","Required Pre-requisite"), c("Outline"), c("Duration"), c("Course SID","Course SID")
    if dur is None: df["Duration"]=""; dur="Duration"

    loop=asyncio.new_event_loop(); asyncio.set_event_loop(loop)
    sdesc, ldesc, fobj, fout = loop.run_until_complete(asyncio.gather(
        _batch(df.get(dcol,"").fillna("").tolist(), "Create a concise 250-character summary of this course description:"),
        _batch(df.get(dcol,"").fillna("").tolist(), "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
        _batch(df.get(ocol,"").fillna("").tolist(), "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':") ,
        _batch(df.get(acol,"").fillna("").tolist(), "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':")))
    loop.close()
    fpre=[default_pre if not str(p).strip() else asyncio.run(_batch([p],"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in df.get(pcol,"").fillna("").tolist()]

    df["Short_Description"],df["Condensed_Description"],df["Formatted_Objectives"],df["Formatted_Agenda"],df["Formatted_Prerequisites"] = sdesc,ldesc,fobj,fout,fpre

    df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
    df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
    dsorted=df.sort_values(["Course ID","Course Start Date"])
    d_agg = dsorted.groupby("Course ID")["Date_fmt"].apply(lambda s: ",".join(s.dropna().unique())).reset_index(name="Dates")
    t_agg = dsorted.groupby("Course ID",group_keys=False).apply(lambda g: ",".join(f"{st}-{et} {tz}" for st,et,tz in zip(g["Course Start Time"],g["Course End Time"],g["Time Zone"]))).reset_index(name="Times")
    parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)

    parent = pd.DataFrame({
        "Type":"variable","SKU":parents["Course ID"],"Name":parents["Course Name"],"Published":1,"Visibility in catalog":"visible","Short description":parents["Short_Description"],"Description":parents["Condensed_Description"],"Tax status":"taxable","In stock?":1,"Stock":1,"Sold individually?":1,"Regular price":parents["SRP Pricing"].replace("[\\$,]","",regex=True),"Categories":"courses","Images":parents["Vendor"].map(logos).fillna(""),"Parent":"","Brands":parents["Vendor"],"Attribute 1 name":"Date","Attribute 1 value(s)":parents["Dates"],"Attribute 1 visible":"visible","Attribute 1 global":1,"Attribute 2 name":"Location","Attribute 2 value(s)":"Virtual","Attribute 2 visible":"visible","Attribute 2 global":1,"Attribute 3 name":"Time","Attribute 3 value(s)":parents["Times"],"Attribute 3 visible":"visible","Attribute 3 global":1,"Meta: outline":parents["Formatted_Agenda"],"Meta: days":parents[dur],"Meta: location":"Virtual","Meta: overview":parents["Target Audience"],"Meta: objectives":parents["Formatted_Objectives"],"Meta: prerequisites":parents["Formatted_Prerequisites"],"Meta: agenda":parents["Formatted_Agenda"]})
    child = pd.DataFrame({
        "Type":"variation, virtual","SKU":dsorted[sid].astype(str).str.strip(),"Name":dsorted["Course Name"],"Published":1,"Visibility in catalog":"visible","Short description":dsorted["Short_Description"],"Description":dsorted["Condensed_Description"],"Tax status":"taxable","In stock?":1,"Stock":1,"Sold individually?":1,"Regular price":dsorted["SRP Pricing"].replace("[\\$,]","",regex=True),"Categories":"courses","Images":dsorted["Vendor"].map(logos).fillna(""),"Parent":dsorted["Course ID"],"Brands":dsorted["Vendor"],"Attribute 1 name":"Date","Attribute 1 value(s)":dsorted["Date_fmt"],"Attribute 1 visible":"visible","Attribute 1 global":1,"Attribute 2 name":"Location","Attribute 2 value(s)":"Virtual","Attribute 2 visible":"visible","Attribute 2 global":1,"Attribute 3 name":"Time","Attribute 3 value(s)":dsorted.apply(lambda r:f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",axis=1),"Attribute 3 visible":"visible","Attribute 3 global":1,"Meta: outline":dsorted["Formatted_Agenda"],"Meta: days":dsorted[dur],"Meta: location":"Virtual","Meta: overview":dsorted["Target Audience"],"Meta: objectives":dsorted["Formatted_Objectives"],"Meta: prerequisites":dsorted["Formatted_Prerequisites"],"Meta: agenda":dsorted["Formatted_Agenda"]})

    all_rows = pd.concat([parent,child],ignore_index=True)
    order=["Type","SKU","Name","Published","Visibility in catalog","Short description","Description","Tax status","In stock?","Stock","Sold individually?","Regular price","Categories","Images","Parent","Brands","Attribute 1 name","Attribute 1 value(s)","Attribute 1 visible","Attribute 1 global","Attribute 2 name","Attribute 2 value(s)","Attribute 2 visible","Attribute 2 global","Attribute 3 name","Attribute 3 value(s)","Attribute 3 visible","Attribute 3 global","Meta: outline","Meta: days","Meta: location","Meta: overview","Meta: objectives","Meta: prerequisites","Meta: agenda"]
    out=BytesIO(); all_rows[order].to_csv(out,index=False,encoding="utf-8-sig"); out.seek(0); return out

# -------- Gradio wrappers ----------------------------------------------------

def process_file(upload):
    csv_bytes = convert(upload.name)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
        tmp.write(csv_bytes.getvalue()); path = tmp.name
    return path

ui = gr.Interface(
    fn=process_file,
    inputs=gr.File(label="Upload NetCom CSV / Excel", file_types=[".csv",".xlsx",".xls"]),
    outputs=gr.File(label="Download WooCommerce CSV"),
    title="NetCom → WooCommerce CSV Processor",
    description="Upload NetCom schedule (.csv/.xlsx) to get the Try 1‑formatted WooCommerce CSV.",
    analytics_enabled=False,
)

if __name__ == "__main__":
    if not os.getenv("OPENAI_API_KEY"):
        print("⚠️  OPENAI_API_KEY not set – AI features will error")
    ui.launch()