codys12's picture
Update app.py
ad15c08 verified
import gradio as gr
import pandas as pd
import tempfile
import os
from io import BytesIO
import re
import openai
import hashlib
import json
import asyncio
import aiohttp
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
import gradio_client.utils
_original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
def _fixed_json_schema_to_python_type(schema, defs=None):
# If the schema is a bool, return a fallback type (e.g. "any")
if isinstance(schema, bool):
return "any"
return _original_json_schema_to_python_type(schema, defs)
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type
# Create cache directory if it doesn't exist
CACHE_DIR = Path("ai_response_cache")
CACHE_DIR.mkdir(exist_ok=True)
def get_cache_path(prompt):
"""Generate a unique cache file path based on the prompt content"""
prompt_hash = hashlib.md5(prompt.encode('utf-8')).hexdigest()
return CACHE_DIR / f"{prompt_hash}.json"
def get_cached_response(prompt):
"""Try to get a cached response for the given prompt"""
cache_path = get_cache_path(prompt)
if cache_path.exists():
try:
with open(cache_path, 'r', encoding='utf-8') as f:
return json.load(f)['response']
except Exception as e:
print(f"Error reading cache: {e}")
return None
def cache_response(prompt, response):
"""Cache the response for a given prompt"""
cache_path = get_cache_path(prompt)
try:
with open(cache_path, 'w', encoding='utf-8') as f:
json.dump({'prompt': prompt, 'response': response}, f)
except Exception as e:
print(f"Error writing to cache: {e}")
async def process_text_batch_async(client, batch_prompts):
"""Process a batch of prompts asynchronously"""
results = []
# First check cache for each prompt
for prompt in batch_prompts:
cached = get_cached_response(prompt)
if cached:
results.append((prompt, cached))
# Filter out prompts that were found in cache
uncached_prompts = [p for p in batch_prompts if not any(p == cached_prompt for cached_prompt, _ in results)]
if uncached_prompts:
# Process uncached prompts in parallel
async def process_single_prompt(prompt):
try:
response = await client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0
)
result = response.choices[0].message.content
# Cache the result
cache_response(prompt, result)
return prompt, result
except Exception as e:
print(f"Error processing prompt: {e}")
return prompt, f"Error: {str(e)}"
# Create tasks for all uncached prompts
tasks = [process_single_prompt(prompt) for prompt in uncached_prompts]
# Run all tasks concurrently and wait for them to complete
uncached_results = await asyncio.gather(*tasks)
# Combine cached and newly processed results
results.extend(uncached_results)
# Sort results to match original order of batch_prompts
prompt_to_result = {prompt: result for prompt, result in results}
return [prompt_to_result[prompt] for prompt in batch_prompts]
async def process_text_with_ai_async(texts, instruction):
"""Process text with GPT-4o-mini asynchronously in batches"""
if not texts:
return []
results = []
batch_size = 500
# Create OpenAI async client
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Process in batches
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
batch_prompts = [f"{instruction}\n\nText: {text}" for text in batch]
batch_results = await process_text_batch_async(client, batch_prompts)
results.extend(batch_results)
return results
def process_woocommerce_data_in_memory(netcom_file):
"""
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
and returns the resulting CSV as bytes, suitable for download.
"""
# Define the brand-to-logo mapping with updated URLs
brand_logo_map = {
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
"PMI": "/wp-content/uploads/2025/04/PMI.png",
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png"
}
# Default prerequisite text for courses without prerequisites
default_prerequisite = "No specific prerequisites are required for this course. Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
# 1. Read the uploaded CSV into a DataFrame
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names
# Prepare descriptions for AI processing
descriptions = netcom_df['Decription'].fillna("").tolist()
objectives = netcom_df['Objectives'].fillna("").tolist()
prerequisites = netcom_df['RequiredPrerequisite'].fillna("").tolist()
agendas = netcom_df['Outline'].fillna("").tolist()
# Process with AI asynchronously
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Run all processing tasks concurrently
tasks = [
process_text_with_ai_async(
descriptions,
"Create a concise 250-character summary of this course description:"
),
process_text_with_ai_async(
descriptions,
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:"
),
process_text_with_ai_async(
objectives,
"Format these objectives into a bullet list format with clean formatting. Start each bullet with '• ':"
),
process_text_with_ai_async(
agendas,
"Format this agenda into a bullet list format with clean formatting. Start each bullet with '• ':"
)
]
# Process prerequisites separately to handle default case
formatted_prerequisites_task = []
for prereq in prerequisites:
if not prereq or pd.isna(prereq) or prereq.strip() == "":
formatted_prerequisites_task.append(default_prerequisite)
else:
# For non-empty prerequisites, we'll process them with AI
prereq_result = loop.run_until_complete(process_text_with_ai_async(
[prereq],
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with '• ':"
))
formatted_prerequisites_task.append(prereq_result[0])
# Run all tasks and get results
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
short_descriptions, condensed_descriptions, formatted_objectives, formatted_agendas = results
# Add processed text to dataframe
netcom_df['Short_Description'] = short_descriptions
netcom_df['Condensed_Description'] = condensed_descriptions
netcom_df['Formatted_Objectives'] = formatted_objectives
netcom_df['Formatted_Prerequisites'] = formatted_prerequisites_task
netcom_df['Formatted_Agenda'] = formatted_agendas
# 2. Create aggregated dates and times for each Course ID
# Sort by Course ID and date first
netcom_df = netcom_df.sort_values(['Course ID', 'Course Start Date'])
date_agg = (
netcom_df.groupby('Course ID')['Course Start Date']
.apply(lambda x: ','.join(x.astype(str).unique()))
.reset_index(name='Aggregated_Dates')
)
time_agg = (
netcom_df.groupby('Course ID')
.apply(
lambda df: ','.join(
f"{st}-{et} {tz}"
for st, et, tz in zip(df['Course Start Time'],
df['Course End Time'],
df['Time Zone'])
)
)
.reset_index(name='Aggregated_Times')
)
# 3. Extract unique parent products
parent_products = netcom_df.drop_duplicates(subset=['Course ID'])
# 4. Merge aggregated dates and times
parent_products = parent_products.merge(date_agg, on='Course ID', how='left')
parent_products = parent_products.merge(time_agg, on='Course ID', how='left')
# 5. Create parent (variable) products
woo_parent_df = pd.DataFrame({
'Type': 'variable',
'SKU': parent_products['Course ID'],
'Name': parent_products['Course Name'],
'Published': 1,
'Visibility in catalog': 'visible',
'Short description': parent_products['Short_Description'],
'Description': parent_products['Condensed_Description'],
'Tax status': 'taxable',
'In stock?': 1,
'Regular price': parent_products['SRP Pricing'].replace('[\$,]', '', regex=True),
'Categories': 'courses',
'Images': parent_products['Vendor'].map(brand_logo_map).fillna(''),
'Parent': '',
'Brands': parent_products['Vendor'],
'Attribute 1 name': 'Date',
'Attribute 1 value(s)': parent_products['Aggregated_Dates'],
'Attribute 1 visible': 'visible',
'Attribute 1 global': 1,
'Attribute 2 name': 'Location',
'Attribute 2 value(s)': 'Virtual',
'Attribute 2 visible': 'visible',
'Attribute 2 global': 1,
'Attribute 3 name': 'Time',
'Attribute 3 value(s)': parent_products['Aggregated_Times'],
'Attribute 3 visible': 'visible',
'Attribute 3 global': 1,
'Meta: outline': parent_products['Formatted_Agenda'],
'Meta: days': parent_products['Duration'],
'Meta: location': 'Virtual',
'Meta: overview': parent_products['Target Audience'],
'Meta: objectives': parent_products['Formatted_Objectives'],
'Meta: prerequisites': parent_products['Formatted_Prerequisites'],
'Meta: agenda': parent_products['Formatted_Agenda']
})
# 6. Create child (variation) products
woo_child_df = pd.DataFrame({
'Type': 'variation, virtual',
'SKU': netcom_df['Course SID'],
'Name': netcom_df['Course Name'],
'Published': 1,
'Visibility in catalog': 'visible',
'Short description': netcom_df['Short_Description'],
'Description': netcom_df['Condensed_Description'],
'Tax status': 'taxable',
'In stock?': 1,
'Regular price': netcom_df['SRP Pricing'].replace('[\$,]', '', regex=True),
'Categories': 'courses',
'Images': netcom_df['Vendor'].map(brand_logo_map).fillna(''),
'Parent': netcom_df['Course ID'],
'Brands': netcom_df['Vendor'],
'Attribute 1 name': 'Date',
'Attribute 1 value(s)': netcom_df['Course Start Date'],
'Attribute 1 visible': 'visible',
'Attribute 1 global': 1,
'Attribute 2 name': 'Location',
'Attribute 2 value(s)': 'Virtual',
'Attribute 2 visible': 'visible',
'Attribute 2 global': 1,
'Attribute 3 name': 'Time',
'Attribute 3 value(s)': netcom_df.apply(
lambda row: f"{row['Course Start Time']}-{row['Course End Time']} {row['Time Zone']}", axis=1
),
'Attribute 3 visible': 'visible',
'Attribute 3 global': 1,
'Meta: outline': netcom_df['Formatted_Agenda'],
'Meta: days': netcom_df['Duration'],
'Meta: location': 'Virtual',
'Meta: overview': netcom_df['Target Audience'],
'Meta: objectives': netcom_df['Formatted_Objectives'],
'Meta: prerequisites': netcom_df['Formatted_Prerequisites'],
'Meta: agenda': netcom_df['Formatted_Agenda']
})
# 7. Combine parent + child
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)
# 8. Desired column order (removed Stock and Sold individually?)
column_order = [
'Type', 'SKU', 'Name', 'Published', 'Visibility in catalog',
'Short description', 'Description', 'Tax status', 'In stock?',
'Regular price', 'Categories', 'Images',
'Parent', 'Brands', 'Attribute 1 name', 'Attribute 1 value(s)', 'Attribute 1 visible',
'Attribute 1 global', 'Attribute 2 name', 'Attribute 2 value(s)', 'Attribute 2 visible',
'Attribute 2 global', 'Attribute 3 name', 'Attribute 3 value(s)', 'Attribute 3 visible',
'Attribute 3 global', 'Meta: outline', 'Meta: days', 'Meta: location', 'Meta: overview',
'Meta: objectives', 'Meta: prerequisites', 'Meta: agenda'
]
woo_final_df = woo_final_df[column_order]
# 9. Convert to CSV (in memory)
output_buffer = BytesIO()
woo_final_df.to_csv(output_buffer, index=False, encoding='utf-8-sig')
output_buffer.seek(0)
return output_buffer
def process_file(uploaded_file):
"""
Takes the uploaded file, processes it, and returns the CSV as a file-like object
"""
processed_csv_io = process_woocommerce_data_in_memory(uploaded_file)
# Create a temporary file to save the CSV data
with tempfile.NamedTemporaryFile(delete=False, suffix='.csv') as temp_file:
temp_file.write(processed_csv_io.getvalue())
temp_path = temp_file.name
return temp_path
interface = gr.Interface(
fn=process_file,
inputs=gr.File(label="Upload NetCom CSV", file_types=[".csv"]),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom to WooCommerce CSV Processor",
description="Upload your NetCom Reseller Schedule CSV to generate the WooCommerce import-ready CSV.",
analytics_enabled=False,
)
if __name__ == "__main__":
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print("Warning: OPENAI_API_KEY environment variable not set")
interface.launch()