File size: 8,324 Bytes
47125e3
 
 
 
 
 
 
 
 
 
 
b522f05
 
bc40d56
47125e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96866e6
c66e031
47125e3
 
 
 
 
 
 
 
 
 
 
 
 
702c0ef
 
227a680
47125e3
 
 
 
973e299
da2f69e
 
47125e3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import shutil
import os
from sklearn.neighbors import NearestNeighbors
from tempfile import NamedTemporaryFile

openAI_key = os.environ['OpenAPI']





def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []
    
    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks



class SemanticSearch:
    
    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False
    
    
    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True
    
    
    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
        
        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors
    
    
    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings



#def load_recommender(path, start_page=1):
#    global recommender
#   texts = pdf_to_text(path, start_page=start_page)
#   chunks = text_to_chunks(texts, start_page=start_page)
#    recommender.fit(chunks)
#    return 'Corpus Loaded.'

# The modified function generates embeddings based on PDF file name and page number and checks if the embeddings file exists before loading or generating it.	

def load_recommender(path, start_page=1):
    global recommender
    pdf_file = os.path.basename(path)
    embeddings_file = f"{pdf_file}_{start_page}.npy"
    
    if os.path.isfile(embeddings_file):
        embeddings = np.load(embeddings_file)
        recommender.embeddings = embeddings
        recommender.fitted = True
        return "Embeddings loaded from file"
    
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    np.save(embeddings_file, recommender.embeddings)
    return 'Corpus Loaded.'



def generate_text(openAI_key,prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message

def process_file(file):
    temp_file = NamedTemporaryFile(delete=False, suffix='.pdf')
    file.save(temp_file.name)
    temp_file.close()
    return temp_file.name


    
def generate_text2(openAI_key, prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
                {'role': 'user', 'content': prompt}]
    
    completions = openai.ChatCompletion.create(
        model=engine,
        messages=messages,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].message['content']
    return message

def generate_answer(question,openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Make sure the answer is correct and don't output false content. "\
              "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(openAI_key, prompt,"text-davinci-003")
    return answer

def unique_filename(file_name):
    counter = 1
    new_file_name = file_name
    while os.path.isfile(new_file_name):
        name, ext = os.path.splitext(file_name)
        new_file_name = f"{name}_{counter}{ext}"
        counter += 1
    return new_file_name


def question_answer(url, file, question, openAI_key):
  #openapi key here

    if url.strip() == '' and file == None:
        return '[ERROR]: Both URL and PDF is empty. Provide at least one.', False
    
    if url.strip() != '' and file != None:
        return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).', False

    if url.strip() != '':
        glob_url = url
        download_pdf(glob_url, 'corpus.pdf')
        load_recommender('corpus.pdf')
    else:
        old_file_name = file.name
        file_name = old_file_name[:-12] + old_file_name[-4:]
        file_name = unique_filename(file_name)  # Ensure the new file name is unique

        # Copy the content of the old file to the new file and delete the old file
        with open(old_file_name, 'rb') as src, open(file_name, 'wb') as dst:
            shutil.copyfileobj(src, dst)
        os.remove(old_file_name)

        load_recommender(file_name)

    if question.strip().lower() == 'exit':
        return '', False
    
    answer = generate_answer(question, openAI_key)
    return answer, True  # Assuming the function returns an answer in all other cases
   

def main_loop(url: str, file: str, question: str):
    answer, cont = question_answer(url, file, question, openAI_key)
    return answer, cont


def on_click(*args):
    answer.value = main_loop(url.value, file.value, question.value)


recommender = SemanticSearch()

title = 'Cognitive pdfGPT'
description = """ Why use Cognitive pdfGPT?
The issue is OpenAI has a 4K token constraint, preventing it from processing an entire PDF file as input. Additionally, ChatGPT cannot (as of yet) directly talk to external data. The solution is Cognitive pdfGPT, which allows you to chat with your PDF file using GPT functionalities. The application converts the document into smaller files and generates embeddings using a powerful Deep Averaging Network Encoder. A semantic search is performed on your data, and the top relevant results are used to generate a response. 🛑DO NOT USE CONFIDENTIAL INFORMATION """





with gr.Blocks() as demo:
   
   gr.Markdown(f'<center><h1>{title}</h1></center>')
   gr.Markdown(description)

   with gr.Row():

        with gr.Group():
            file=gr.File(label='➡️ Upload your PDF ⬅️  NO CONFIDENTIAL FILES SHOULD BE USED ', file_types=['.pdf'])
            url=gr.Textbox(label=' ')
            question=gr.Textbox(label='🔤 Enter your question here 🔤')
            btn=gr.Button(value='Submit')
            btn.style(full_width=False)

        with gr.Group():
            gr.Image("logo.jpg") 
            answer = gr.Textbox(label='The answer to your question is :')
            
        btn.click(main_loop, inputs=[url, file, question], outputs=[answer])

     

demo.launch()