assignment1 / app.py
cogcorp's picture
Update app.py
29f3079
raw
history blame
3.13 kB
import gradio as gr
from PyPDF2 import PdfReader
import zipfile
import os
import io
import nltk
import openai
import time
# install required libraries
subprocess.check_call([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"])
# download required NLTK data packages
nltk.download('punkt')
# Put your OpenAI API key here
openai.api_key = os.getenv('OpenAPI')
def create_persona(text):
max_retries = 5
for attempt in range(max_retries):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a knowledgeable assistant."},
{"role": "user", "content": text},
]
)
return response['choices'][0]['message']['content']
except Exception as e:
if attempt < max_retries - 1: # if it's not the last attempt
time.sleep(1) # wait for 1 seconds before retrying
continue
else:
return str(e) # return the exception message after the last attempt
def call_openai_api(persona, user_prompt):
max_retries = 5
for attempt in range(max_retries):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": f"You are a knowledgeable assistant with a persona based on this: \n{persona}"},
{"role": "user", "content": user_prompt},
]
)
return response['choices'][0]['message']['content']
except Exception as e:
if attempt < max_retries - 1: # if it's not the last attempt
time.sleep(1) # wait for 1 seconds before retrying
continue
else:
return str(e) # return the exception message after the last attempt
def pdf_to_text(file, user_prompt):
z = zipfile.ZipFile(file.name, 'r')
texts = []
for filename in z.namelist():
if filename.endswith('.pdf'):
pdf_file_data = z.read(filename)
pdf_file_io = io.BytesIO(pdf_file_data)
pdf = PdfReader(pdf_file_io)
text = ''
for page in pdf.pages:
text += page.extract_text()
# Create persona from text
persona = create_persona(text)
# Using OpenAI API
response = call_openai_api(persona, user_prompt)
texts.append(response)
return '\n'.join(texts)
iface = gr.Interface(
fn=pdf_to_text,
inputs=[
gr.inputs.File(label="PDF File (Upload a Zip file containing ONLY PDF files)"),
gr.inputs.Textbox(label="User Prompt (Enter a prompt to interact with your persona)")
],
outputs=gr.outputs.Textbox(label="Cognitive Agent Response"),
title="Ask An Expert Proof Of Concept",
description="This app extracts knowledge from the uploaded Zip files. The Cognitive Agent will use this data to build your unique persona."
)
iface.launch(share=False)