Spaces:
Sleeping
Sleeping
import urllib.request | |
import fitz | |
import re | |
import numpy as np | |
import tensorflow_hub as hub | |
import openai | |
import gradio as gr | |
import os | |
import zipfile | |
from sklearn.neighbors import NearestNeighbors | |
openai.api_key = os.getenv('OpenAPI') | |
def download_pdf(url, output_path): | |
urllib.request.urlretrieve(url, output_path) | |
def extract_zip(file): | |
with zipfile.ZipFile(file, 'r') as zip_ref: | |
zip_ref.extractall('pdfs') | |
def preprocess(text): | |
text = text.replace('\n', ' ') | |
text = re.sub('\s+', ' ', text) | |
return text | |
def pdf_to_text(path, start_page=1, end_page=None): | |
doc = fitz.open(path) | |
total_pages = doc.page_count | |
if end_page is None: | |
end_page = total_pages | |
text_list = [] | |
for i in range(start_page-1, end_page): | |
text = doc.load_page(i).get_text("text") | |
text = preprocess(text) | |
text_list.append(text) | |
doc.close() | |
return text_list | |
def text_to_chunks(texts, word_length=150, start_page=1): | |
text_toks = [t.split(' ') for t in texts] | |
chunks = [] | |
for idx, words in enumerate(text_toks): | |
for i in range(0, len(words), word_length): | |
chunk = words[i:i+word_length] | |
if (i+word_length) > len(words) and (len(chunk) < word_length) and ( | |
len(text_toks) != (idx+1)): | |
text_toks[idx+1] = chunk + text_toks[idx+1] | |
continue | |
chunk = ' '.join(chunk).strip() | |
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"' | |
chunks.append(chunk) | |
return chunks | |
class SemanticSearch: | |
def __init__(self): | |
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') | |
self.fitted = False | |
def fit(self, data, batch=1000, n_neighbors=5): | |
self.data = data | |
self.embeddings = self.get_text_embedding(data, batch=batch) | |
n_neighbors = min(n_neighbors, len(self.embeddings)) | |
self.nn = NearestNeighbors(n_neighbors=n_neighbors) | |
self.nn.fit(self.embeddings) | |
self.fitted = True | |
def __call__(self, text, return_data=True): | |
inp_emb = self.use([text]) | |
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] | |
if return_data: | |
return [self.data[i] for i in neighbors] | |
else: | |
return neighbors | |
def get_text_embedding(self, texts, batch=1000): | |
embeddings = [] | |
for i in range(0, len(texts), batch): | |
text_batch = texts[i:(i+batch)] | |
emb_batch = self.use(text_batch) | |
embeddings.append(emb_batch) | |
embeddings = np.vstack(embeddings) | |
return embeddings | |
recommender = SemanticSearch() | |
def load_recommender(paths, start_page=1): | |
global recommender | |
chunks = [] | |
for path in paths: | |
texts = pdf_to_text(path, start_page=start_page) | |
chunks += text_to_chunks(texts, start_page=start_page) | |
recommender.fit(chunks) | |
return 'Corpus Loaded.' | |
def generate_text(prompt, engine="davinci"): | |
completions = openApologies for the cut-off. Here's the rest of the code: | |
```python | |
completions = openai.Completion.create( | |
engine=engine, | |
prompt=prompt, | |
max_tokens=512, | |
n=1, | |
stop=None, | |
temperature=0.7, | |
) | |
message = completions.choices[0].text | |
return message | |
def generate_answer(question): | |
topn_chunks = recommender(question) | |
prompt = "" | |
prompt += 'search results:\n\n' | |
for c in topn_chunks: | |
prompt += c + '\n\n' | |
prompt += "Compose a comprehensive reply to the query using the search results given. "\ | |
"Only include information found in the results and "\ | |
"don't add any additional information. Make sure the answer is correct and don't output false content. "\ | |
"If the text does not relate to the query, simply state 'Text Not Found in Body of Knowledge'. "\ | |
"Only answer what is asked. "\ | |
"Answer step-by-step. \n\nQuery: {question}\n Answer: " | |
answer = generate_text(prompt, "davinci") | |
return answer | |
def question_answer(urls, file, question): | |
if urls.strip() == '' and file is None: | |
return '[ERROR]: Both URLs and PDFs are empty. Provide at least one.' | |
paths = [] | |
if urls.strip() != '': | |
urls = urls.split(',') # split the URLs string into a list of URLs | |
for url in urls: | |
download_pdf(url.strip(), 'corpus.pdf') | |
paths.append('corpus.pdf') | |
if file is not None: | |
extract_zip(file.name) # extract the PDFs from the zip file | |
for pdf_file in os.listdir('pdfs'): | |
paths.append(os.path.join('pdfs', pdf_file)) | |
load_recommender(paths) | |
if question.strip() == '': | |
return '[ERROR]: Question field is empty' | |
return generate_answer(question) | |
title = 'PDF GPT' | |
description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly.""" | |
iface = gr.Interface( | |
fn=question_answer, | |
inputs=[ | |
gr.inputs.Textbox(label="Enter PDF URLs here, separated by commas"), | |
gr.inputs.File(label="Upload a zip file containing PDF files"), | |
gr.inputs.Textbox(label="Enter your question here"), | |
], | |
outputs=gr.outputs.Textbox(label="Generated Answer"), | |
title=title, | |
description=description | |
) | |
iface.launch() | |