assignment1 / app.py
cogcorp's picture
Update app.py
48f21f7
raw
history blame
5.67 kB
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
import zipfile
from sklearn.neighbors import NearestNeighbors
openai.api_key = os.getenv('OpenAPI')
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def extract_zip(file):
with zipfile.ZipFile(file, 'r') as zip_ref:
zip_ref.extractall('pdfs')
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i:(i+batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
recommender = SemanticSearch()
def load_recommender(paths, start_page=1):
global recommender
chunks = []
for path in paths:
texts = pdf_to_text(path, start_page=start_page)
chunks += text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
def generate_text(prompt, engine="davinci"):
completions = openApologies for the cut-off. Here's the rest of the code:
```python
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text
return message
def generate_answer(question):
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Compose a comprehensive reply to the query using the search results given. "\
"Only include information found in the results and "\
"don't add any additional information. Make sure the answer is correct and don't output false content. "\
"If the text does not relate to the query, simply state 'Text Not Found in Body of Knowledge'. "\
"Only answer what is asked. "\
"Answer step-by-step. \n\nQuery: {question}\n Answer: "
answer = generate_text(prompt, "davinci")
return answer
def question_answer(urls, file, question):
if urls.strip() == '' and file is None:
return '[ERROR]: Both URLs and PDFs are empty. Provide at least one.'
paths = []
if urls.strip() != '':
urls = urls.split(',') # split the URLs string into a list of URLs
for url in urls:
download_pdf(url.strip(), 'corpus.pdf')
paths.append('corpus.pdf')
if file is not None:
extract_zip(file.name) # extract the PDFs from the zip file
for pdf_file in os.listdir('pdfs'):
paths.append(os.path.join('pdfs', pdf_file))
load_recommender(paths)
if question.strip() == '':
return '[ERROR]: Question field is empty'
return generate_answer(question)
title = 'PDF GPT'
description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
iface = gr.Interface(
fn=question_answer,
inputs=[
gr.inputs.Textbox(label="Enter PDF URLs here, separated by commas"),
gr.inputs.File(label="Upload a zip file containing PDF files"),
gr.inputs.Textbox(label="Enter your question here"),
],
outputs=gr.outputs.Textbox(label="Generated Answer"),
title=title,
description=description
)
iface.launch()