Spaces:
Sleeping
Sleeping
import urllib.request | |
import fitz | |
import re | |
import numpy as np | |
import tensorflow_hub as hub | |
import openai | |
import gradio as gr | |
import os | |
import zipfile | |
from sklearn.neighbors import NearestNeighbors | |
openai.api_key = os.getenv('OpenAPI') | |
def download_pdf(url, output_path): | |
urllib.request.urlretrieve(url, output_path) | |
def extract_zip(file): | |
with zipfile.ZipFile(file, 'r') as zip_ref: | |
for member in zip_ref.namelist(): | |
filename = os.path.basename(member) | |
if filename.endswith('.pdf'): | |
zip_ref.extract(member, 'pdfs') | |
def preprocess(text): | |
text = text.replace('\n', ' ') | |
text = re.sub('\s+', ' ', text) | |
return text | |
def pdf_to_text(path, start_page=1, end_page=None): | |
doc = fitz.open(path) | |
total_pages = doc.page_count | |
if end_page is None: | |
end_page = total_pages | |
text_list = [] | |
for i in range(start_page-1, end_page): | |
text = doc.load_page(i).get_text("text") | |
text = preprocess(text) | |
text_list.append(text) | |
doc.close() | |
return text_list | |
def text_to_chunks(texts, word_length=150, start_page=1): | |
text_toks = [t.split(' ') for t in texts] | |
chunks = [] | |
for idx, words in enumerate(text_toks): | |
for i in range(0, len(words), word_length): | |
chunk = words[i:i+word_length] | |
if (i+word_length) > len(words) and (len(chunk) < word_length) and ( | |
len(text_toks) != (idx+1)): | |
text_toks[idx+1] = chunk + text_toks[idx+1] | |
continue | |
chunk = ' '.join(chunk).strip() | |
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"' | |
chunks.append(chunk) | |
return chunks | |
class SemanticSearch: | |
def __init__(self): | |
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') | |
self.fitted = False | |
def fit(self, data, batch=1000, n_neighbors=15): | |
self.data = data | |
self.embeddings = self.get_text_embedding(data, batch=batch) | |
n_neighbors = min(n_neighbors, len(self.embeddings)) | |
self.nn = NearestNeighbors(n_neighbors=n_neighbors) | |
self.nn.fit(self.embeddings) | |
self.fitted = True | |
def __call__(self, text, return_data=True): | |
inp_emb = self.use([text]) | |
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] | |
if return_data: | |
return [self.data[i] for i in neighbors] | |
else: | |
return neighbors | |
def get_text_embedding(self, texts, batch=1000): | |
embeddings = [] | |
for i in range(0, len(texts), batch): | |
text_batch = texts[i:(i+batch)] | |
emb_batch = self.use(text_batch) | |
embeddings.append(emb_batch) | |
embeddings = np.vstack(embeddings) | |
return embeddings | |
recommender = SemanticSearch() | |
def load_recommender(paths, start_page=1): | |
global recommender | |
chunks = [] | |
for path in paths: | |
if path.endswith('.pdf'): | |
texts = pdf_to_text(path, start_page=start_page) | |
chunks += text_to_chunks(texts, start_page=start_page) | |
recommender.fit(chunks) | |
return 'Corpus Loaded.' | |
def generate_text(messages, engine='gpt-3.5-turbo', max_tokens=2048, temperature=0.8): | |
response = openai.ChatCompletion.create( | |
model=engine, | |
messages=[{"role": "system", "content": "You are a research assistant"}, | |
{"role": "user", "content": prompt}], | |
max_tokens=max_tokens, | |
n=1, | |
temperature=temperature | |
) | |
return response.choices[0].message['content'] | |
def generate_answer(question): | |
topn_chunks = recommender(question) | |
prompt = "You are a helpful assistant.\n" | |
prompt += "User: " + question + "\n" | |
for c in topn_chunks: | |
prompt += "Assistant: " + c + "\n" | |
answer = generate_text(prompt) | |
return answer | |
def question_answer(urls, file, question): | |
if urls.strip() == '' and file is None: | |
return '[ERROR]: Both URLs and PDFs are empty. Provide at least one.' | |
paths = [] | |
if urls.strip() != '': | |
urls = urls.split(',') # split the URLs string into a list of URLs | |
for url in urls: | |
download_pdf(url.strip(), 'corpus.pdf') | |
paths.append('corpus.pdf') | |
if file is not None: | |
extract_zip(file.name) # extract the PDFs from the zip file | |
for pdf_file in os.listdir('pdfs'): | |
paths.append(os.path.join('pdfs', pdf_file)) | |
load_recommender(paths) | |
if question.strip() == '': | |
return '[ERROR]: Question field is empty' | |
return generate_answer(question) | |
title = 'Cognitive AI Agent - Asks the Expert' | |
description = """ This cognitive agent allows you to chat with your PDF files as a single corpus of knowledge. Add your relevant PDFs to a zip file and upload. 🛑PROOF OF CONCEPT🛑 """ | |
iface = gr.Interface( | |
fn=question_answer, | |
inputs=[ | |
gr.inputs.Textbox(label="Enter PDF URLs here, separated by commas"), | |
gr.inputs.File(label="Upload a zip file containing PDF files"), | |
gr.inputs.Textbox(label="Enter your question here"), | |
], | |
outputs=gr.outputs.Textbox(label="Generated Answer"), | |
title=title, | |
description=description | |
) | |
iface.launch() | |