Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -65,7 +65,7 @@ class SemanticSearch:
|
|
65 |
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
|
66 |
self.fitted = False
|
67 |
|
68 |
-
def fit(self, data, batch=1000, n_neighbors=
|
69 |
self.data = data
|
70 |
self.embeddings = self.get_text_embedding(data, batch=batch)
|
71 |
n_neighbors = min(n_neighbors, len(self.embeddings))
|
@@ -103,7 +103,7 @@ def load_recommender(paths, start_page=1):
|
|
103 |
recommender.fit(chunks)
|
104 |
return 'Corpus Loaded.'
|
105 |
|
106 |
-
def generate_text(prompt, engine="
|
107 |
completions = openai.Completion.create(
|
108 |
engine=engine,
|
109 |
prompt=prompt,
|
@@ -127,7 +127,7 @@ def generate_answer(question):
|
|
127 |
"If the text does not relate to the query, simply state 'Text Not Found in Body of Knowledge'. "\
|
128 |
"\n\nQuery: {question}\n Answer: "
|
129 |
|
130 |
-
answer = generate_text(prompt, "
|
131 |
return answer
|
132 |
|
133 |
def question_answer(urls, file, question):
|
|
|
65 |
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
|
66 |
self.fitted = False
|
67 |
|
68 |
+
def fit(self, data, batch=1000, n_neighbors=15):
|
69 |
self.data = data
|
70 |
self.embeddings = self.get_text_embedding(data, batch=batch)
|
71 |
n_neighbors = min(n_neighbors, len(self.embeddings))
|
|
|
103 |
recommender.fit(chunks)
|
104 |
return 'Corpus Loaded.'
|
105 |
|
106 |
+
def generate_text(prompt, engine="gpt-3.5-turbo"):
|
107 |
completions = openai.Completion.create(
|
108 |
engine=engine,
|
109 |
prompt=prompt,
|
|
|
127 |
"If the text does not relate to the query, simply state 'Text Not Found in Body of Knowledge'. "\
|
128 |
"\n\nQuery: {question}\n Answer: "
|
129 |
|
130 |
+
answer = generate_text(prompt, "gpt-3.5-turbo")
|
131 |
return answer
|
132 |
|
133 |
def question_answer(urls, file, question):
|