Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,171 +1,94 @@
|
|
1 |
-
import urllib.request
|
2 |
-
import fitz
|
3 |
-
import re
|
4 |
-
import numpy as np
|
5 |
-
import tensorflow_hub as hub
|
6 |
-
import openai
|
7 |
-
import gradio as gr
|
8 |
import os
|
9 |
import zipfile
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
return text_list
|
45 |
-
|
46 |
-
def text_to_chunks(texts, word_length=150, start_page=1):
|
47 |
-
text_toks = [t.split(' ') for t in texts]
|
48 |
chunks = []
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
len(text_toks) != (idx+1)):
|
55 |
-
text_toks[idx+1] = chunk + text_toks[idx+1]
|
56 |
-
continue
|
57 |
-
chunk = ' '.join(chunk).strip()
|
58 |
-
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
|
59 |
-
chunks.append(chunk)
|
60 |
-
return chunks
|
61 |
-
|
62 |
-
class SemanticSearch:
|
63 |
-
|
64 |
-
def __init__(self):
|
65 |
-
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
|
66 |
-
self.fitted = False
|
67 |
-
|
68 |
-
def fit(self, data, batch=1000, n_neighbors=15):
|
69 |
-
self.data = data
|
70 |
-
self.embeddings = self.get_text_embedding(data, batch=batch)
|
71 |
-
n_neighbors = min(n_neighbors, len(self.embeddings))
|
72 |
-
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
|
73 |
-
self.nn.fit(self.embeddings)
|
74 |
-
self.fitted = True
|
75 |
-
|
76 |
-
def __call__(self, text, return_data=True):
|
77 |
-
inp_emb = self.use([text])
|
78 |
-
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
|
79 |
-
|
80 |
-
if return_data:
|
81 |
-
return [self.data[i] for i in neighbors]
|
82 |
else:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
text_batch = texts[i:(i+batch)]
|
89 |
-
emb_batch = self.use(text_batch)
|
90 |
-
embeddings.append(emb_batch)
|
91 |
-
embeddings = np.vstack(embeddings)
|
92 |
-
return embeddings
|
93 |
-
|
94 |
-
recommender = SemanticSearch()
|
95 |
-
|
96 |
-
def load_recommender(paths, start_page=1):
|
97 |
-
global recommender
|
98 |
-
chunks = []
|
99 |
-
for path in paths:
|
100 |
-
if path.endswith('.pdf'):
|
101 |
-
texts = pdf_to_text(path, start_page=start_page)
|
102 |
-
chunks += text_to_chunks(texts, start_page=start_page)
|
103 |
-
recommender.fit(chunks)
|
104 |
-
return 'Corpus Loaded.'
|
105 |
-
|
106 |
-
def generate_text(messages, engine='gpt-3.5-turbo', max_tokens=2048, temperature=0.8):
|
107 |
-
response = openai.ChatCompletion.create(
|
108 |
-
model=engine,
|
109 |
-
messages=[{"role": "system", "content": "You are a research assistant"},
|
110 |
-
{"role": "user", "content": question}],
|
111 |
-
max_tokens=max_tokens,
|
112 |
-
n=1,
|
113 |
-
temperature=temperature
|
114 |
-
)
|
115 |
-
return response.choices[0].message['content']
|
116 |
-
|
117 |
-
|
118 |
-
def generate_answer(question):
|
119 |
-
topn_chunks = recommender(question)
|
120 |
-
|
121 |
-
prompt = "You are a helpful assistant.\n"
|
122 |
-
prompt += "User: " + question + "\n"
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
answer = generate_text(prompt)
|
128 |
return answer
|
129 |
|
|
|
|
|
|
|
|
|
130 |
|
|
|
|
|
|
|
131 |
|
132 |
-
def question_answer(urls, file, question):
|
133 |
-
if urls.strip() == '' and file is None:
|
134 |
-
return '[ERROR]: Both URLs and PDFs are empty. Provide at least one.'
|
135 |
-
|
136 |
-
paths = []
|
137 |
-
if urls.strip() != '':
|
138 |
-
urls = urls.split(',') # split the URLs string into a list of URLs
|
139 |
-
for url in urls:
|
140 |
-
download_pdf(url.strip(), 'corpus.pdf')
|
141 |
-
paths.append('corpus.pdf')
|
142 |
-
|
143 |
-
if file is not None:
|
144 |
-
extract_zip(file.name) # extract the PDFs from the zip file
|
145 |
-
for pdf_file in os.listdir('pdfs'):
|
146 |
-
paths.append(os.path.join('pdfs', pdf_file))
|
147 |
-
|
148 |
-
load_recommender(paths)
|
149 |
-
|
150 |
-
if question.strip() == '':
|
151 |
-
return '[ERROR]: Question field is empty'
|
152 |
-
|
153 |
-
return generate_answer(question)
|
154 |
-
|
155 |
-
title = 'Cognitive AI Agent - Asks the Expert'
|
156 |
-
description = """ This cognitive agent allows you to chat with your PDF files as a single corpus of knowledge. Add your relevant PDFs to a zip file and upload. 🛑PROOF OF CONCEPT🛑 """
|
157 |
|
158 |
-
iface = gr.Interface(
|
159 |
-
fn=question_answer,
|
160 |
-
inputs=[
|
161 |
-
gr.inputs.Textbox(label="Enter PDF URLs here, separated by commas"),
|
162 |
-
gr.inputs.File(label="Upload a zip file containing PDF files"),
|
163 |
-
gr.inputs.Textbox(label="Enter your question here"),
|
164 |
-
],
|
165 |
-
outputs=gr.outputs.Textbox(label="Generated Answer"),
|
166 |
-
title=title,
|
167 |
-
description=description
|
168 |
-
)
|
169 |
-
iface.launch()
|
170 |
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import zipfile
|
3 |
+
import openai
|
4 |
+
import gradio as gr
|
5 |
+
from gradio import components as grc
|
6 |
+
|
7 |
+
# Set up OpenAI API credentials
|
8 |
+
openai.api_key = "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"
|
9 |
+
|
10 |
+
# Function to extract text from PDF using OpenAI API
|
11 |
+
def extract_text_from_pdf(pdf_path):
|
12 |
+
with open(pdf_path, "rb") as f:
|
13 |
+
pdf_bytes = f.read()
|
14 |
+
response = openai.Completion.create(
|
15 |
+
engine="text-davinci-003",
|
16 |
+
prompt=pdf_bytes.decode("utf-8"),
|
17 |
+
max_tokens=2048,
|
18 |
+
temperature=0.7,
|
19 |
+
n=1,
|
20 |
+
stop=None,
|
21 |
+
timeout=120,
|
22 |
+
)
|
23 |
+
return response.choices[0].text.strip()
|
24 |
+
|
25 |
+
# Function to extract text from multiple PDFs in a ZIP archive
|
26 |
+
def extract_text_from_zip(zip_file):
|
27 |
+
corpus = ""
|
28 |
+
with zipfile.ZipFile(zip_file, "r") as zip_ref:
|
29 |
+
for file_name in zip_ref.namelist():
|
30 |
+
if file_name.endswith(".pdf"):
|
31 |
+
extracted_text = extract_text_from_pdf(zip_ref.read(file_name))
|
32 |
+
corpus += extracted_text + "\n"
|
33 |
+
return corpus
|
34 |
+
|
35 |
+
# Function to split text into chunks based on maximum token length
|
36 |
+
def split_text_into_chunks(text, max_tokens=2048):
|
|
|
|
|
|
|
|
|
37 |
chunks = []
|
38 |
+
words = text.split()
|
39 |
+
current_chunk = ""
|
40 |
+
for word in words:
|
41 |
+
if len(current_chunk) + len(word) <= max_tokens:
|
42 |
+
current_chunk += word + " "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
+
chunks.append(current_chunk.strip())
|
45 |
+
current_chunk = word + " "
|
46 |
+
if current_chunk:
|
47 |
+
chunks.append(current_chunk.strip())
|
48 |
+
return chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Function to process files and query using OpenAI API
|
51 |
+
def process_files_and_query(zip_file, query):
|
52 |
+
# Save uploaded ZIP file
|
53 |
+
zip_path = "uploaded.zip"
|
54 |
+
with open(zip_path, "wb") as f:
|
55 |
+
f.write(zip_file.read())
|
56 |
+
|
57 |
+
# Extract text from PDFs in the ZIP archive
|
58 |
+
corpus = extract_text_from_zip(zip_file)
|
59 |
+
|
60 |
+
# Split the corpus into chunks
|
61 |
+
chunks = split_text_into_chunks(corpus)
|
62 |
+
|
63 |
+
# Perform OpenAI API query on each chunk
|
64 |
+
responses = []
|
65 |
+
for chunk in chunks:
|
66 |
+
prompt = chunk + "\nQuery: " + query
|
67 |
+
response = openai.Completion.create(
|
68 |
+
engine="text-davinci-003",
|
69 |
+
prompt=prompt,
|
70 |
+
max_tokens=2048,
|
71 |
+
temperature=0.7,
|
72 |
+
n=1,
|
73 |
+
stop=None,
|
74 |
+
timeout=120,
|
75 |
+
)
|
76 |
+
responses.append(response.choices[0].text.strip())
|
77 |
+
|
78 |
+
# Combine the responses into a single answer
|
79 |
+
answer = " ".join(responses)
|
80 |
|
|
|
81 |
return answer
|
82 |
|
83 |
+
# Gradio input and output interfaces
|
84 |
+
zip_file_input = grc.File(label="Upload ZIP File")
|
85 |
+
query_input = grc.Textbox(label="Enter your query")
|
86 |
+
output = grc.Textbox(label="Answer")
|
87 |
|
88 |
+
# Gradio interface configuration
|
89 |
+
iface = gr.Interface(fn=process_files_and_query, inputs=[zip_file_input, query_input], outputs=output, title="PDF Search", description="Upload a ZIP file containing PDFs, enter your query, and get the answer.")
|
90 |
+
iface.launch()
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|