Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,65 @@
|
|
|
|
1 |
import fitz
|
2 |
-
import uuid
|
3 |
import re
|
4 |
import numpy as np
|
5 |
import tensorflow_hub as hub
|
6 |
import openai
|
7 |
import gradio as gr
|
8 |
-
import shutil
|
9 |
import os
|
10 |
from sklearn.neighbors import NearestNeighbors
|
11 |
-
from tempfile import NamedTemporaryFile
|
12 |
-
from PyPDF2 import PdfReader
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
class SemanticSearch:
|
17 |
-
|
18 |
def __init__(self):
|
19 |
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
|
20 |
self.fitted = False
|
21 |
-
|
22 |
-
|
23 |
def fit(self, data, batch=1000, n_neighbors=5):
|
24 |
self.data = data
|
25 |
self.embeddings = self.get_text_embedding(data, batch=batch)
|
@@ -27,87 +67,128 @@ class SemanticSearch:
|
|
27 |
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
|
28 |
self.nn.fit(self.embeddings)
|
29 |
self.fitted = True
|
30 |
-
|
31 |
-
|
32 |
def __call__(self, text, return_data=True):
|
33 |
inp_emb = self.use([text])
|
34 |
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
|
35 |
-
|
36 |
if return_data:
|
37 |
return [self.data[i] for i in neighbors]
|
38 |
else:
|
39 |
return neighbors
|
40 |
-
|
41 |
-
|
42 |
def get_text_embedding(self, texts, batch=1000):
|
43 |
embeddings = []
|
44 |
for i in range(0, len(texts), batch):
|
45 |
-
text_batch = texts[i:(i+batch
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
-
def
|
57 |
-
|
58 |
-
text = ''
|
59 |
-
for i in range(start_page, len(pdf.pages)):
|
60 |
-
text += pdf.pages[i].extract_text()
|
61 |
return text
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
return chunks
|
66 |
|
67 |
|
|
|
68 |
|
69 |
-
def
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
-
def load_recommender(
|
76 |
global recommender
|
77 |
-
|
78 |
-
|
79 |
-
pdf_file = os.path.basename(path)
|
80 |
-
embeddings_file = f"{pdf_file}_{start_page}.npy"
|
81 |
-
|
82 |
-
if os.path.isfile(embeddings_file):
|
83 |
-
embeddings = np.load(embeddings_file)
|
84 |
-
recommender.embeddings = embeddings
|
85 |
-
recommender.fitted = True
|
86 |
-
print("Embeddings loaded from file")
|
87 |
-
continue
|
88 |
-
|
89 |
-
texts = pdf_to_text(path, start_page=start_page)
|
90 |
-
chunks.extend(text_to_chunks(texts, start_page=start_page))
|
91 |
-
|
92 |
recommender.fit(chunks)
|
93 |
-
np.save(embeddings_file, recommender.embeddings)
|
94 |
return 'Corpus Loaded.'
|
95 |
|
96 |
|
97 |
-
def generate_text(openAI_key, prompt, engine="
|
98 |
openai.api_key = openAI_key
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
completions = openai.ChatCompletion.create(
|
103 |
-
model=engine,
|
104 |
-
messages=messages,
|
105 |
max_tokens=512,
|
106 |
n=1,
|
107 |
stop=None,
|
108 |
temperature=0.7,
|
109 |
)
|
110 |
-
message = completions.choices[0].
|
111 |
return message
|
112 |
|
113 |
|
@@ -117,80 +198,55 @@ def generate_answer(question, openAI_key):
|
|
117 |
prompt += 'search results:\n\n'
|
118 |
for c in topn_chunks:
|
119 |
prompt += c + '\n\n'
|
120 |
-
|
121 |
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
prompt += f"Query: {question}\nAnswer:"
|
127 |
-
answer = generate_text(openAI_key, prompt, "
|
128 |
return answer
|
129 |
|
130 |
|
131 |
-
def
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
if url.strip() != '':
|
136 |
glob_url = url
|
137 |
download_pdf(glob_url, 'corpus.pdf')
|
138 |
-
|
139 |
-
if files is not None and len(files) > 0:
|
140 |
-
for file in files:
|
141 |
-
old_file_name = file.name
|
142 |
-
file_name = old_file_name[:-12] + old_file_name[-4:]
|
143 |
-
file_name = unique_filename(file_name) # Ensure the new file name is unique
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
149 |
|
150 |
-
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
if question.strip().lower() == 'exit':
|
155 |
-
return '', False
|
156 |
-
|
157 |
-
answer = generate_answer(question, openAI_key)
|
158 |
-
return answer, True # Assuming the function returns an answer in all other cases
|
159 |
-
|
160 |
-
|
161 |
-
def on_click(*args):
|
162 |
-
answer.value = main_loop(url.value, files.value, question.value)
|
163 |
|
164 |
|
165 |
recommender = SemanticSearch()
|
166 |
|
167 |
-
title = '
|
168 |
-
description = """
|
169 |
-
This is Cognitive Chat. Here you can upload multiple PDF files and query them as a single corpus of knowledge. 🛑DO NOT USE CONFIDENTIAL INFORMATION """
|
170 |
-
|
171 |
-
|
172 |
-
with gr.Blocks() as demo:
|
173 |
-
gr.Markdown(f'<center><h1>{title}</h1></center>')
|
174 |
-
gr.Markdown(description)
|
175 |
-
|
176 |
-
with gr.Row():
|
177 |
-
|
178 |
-
with gr.Group():
|
179 |
-
files = gr.Files(label='➡️ Upload your PDFs ⬅️ NO CONFIDENTIAL FILES ', file_types=['.pdf'])
|
180 |
-
url = gr.Textbox(label=' ')
|
181 |
-
question = gr.Textbox(label='🔤 Enter your question here 🔤')
|
182 |
-
btn = gr.Button(value='Submit')
|
183 |
-
btn.style(full_width=False)
|
184 |
-
|
185 |
-
with gr.Group():
|
186 |
-
gr.Image("logo.jpg")
|
187 |
-
answer = gr.Textbox(label='The answer to your question is :')
|
188 |
-
|
189 |
-
btn.click(main_loop, inputs=[url, files, question, openAI_key], outputs=[answer])
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
|
194 |
-
|
|
|
|
|
195 |
|
196 |
|
|
|
1 |
+
import urllib.request
|
2 |
import fitz
|
|
|
3 |
import re
|
4 |
import numpy as np
|
5 |
import tensorflow_hub as hub
|
6 |
import openai
|
7 |
import gradio as gr
|
|
|
8 |
import os
|
9 |
from sklearn.neighbors import NearestNeighbors
|
|
|
|
|
10 |
|
11 |
+
def download_pdf(url, output_path):
|
12 |
+
urllib.request.urlretrieve(url, output_path)
|
13 |
+
|
14 |
+
|
15 |
+
def preprocess(text):
|
16 |
+
text = text.replace('\n', ' ')
|
17 |
+
text = re.sub('\s+', ' ', text)
|
18 |
+
return text
|
19 |
+
|
20 |
+
|
21 |
+
def pdf_to_text(path, start_page=1, end_page=None):
|
22 |
+
doc = fitz.open(path)
|
23 |
+
total_pages = doc.page_count
|
24 |
+
|
25 |
+
if end_page is None:
|
26 |
+
end_page = total_pages
|
27 |
+
|
28 |
+
text_list = []
|
29 |
+
|
30 |
+
for i in range(start_page-1, end_page):
|
31 |
+
text = doc.load_page(i).get_text("text")
|
32 |
+
text = preprocess(text)
|
33 |
+
text_list.append(text)
|
34 |
+
|
35 |
+
doc.close()
|
36 |
+
return text_list
|
37 |
+
|
38 |
+
|
39 |
+
def text_to_chunks(texts, word_length=150, start_page=1):
|
40 |
+
text_toks = [t.split(' ') for t in texts]
|
41 |
+
page_nums = []
|
42 |
+
chunks = []
|
43 |
+
|
44 |
+
for idx, words in enumerate(text_toks):
|
45 |
+
for i in range(0, len(words), word_length):
|
46 |
+
chunk = words[i:i+word_length]
|
47 |
+
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
|
48 |
+
len(text_toks) != (idx+1)):
|
49 |
+
text_toks[idx+1] = chunk + text_toks[idx+1]
|
50 |
+
continue
|
51 |
+
chunk = ' '.join(chunk).strip()
|
52 |
+
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
|
53 |
+
chunks.append(chunk)
|
54 |
+
return chunks
|
55 |
+
|
56 |
|
57 |
class SemanticSearch:
|
58 |
+
|
59 |
def __init__(self):
|
60 |
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
|
61 |
self.fitted = False
|
62 |
+
|
|
|
63 |
def fit(self, data, batch=1000, n_neighbors=5):
|
64 |
self.data = data
|
65 |
self.embeddings = self.get_text_embedding(data, batch=batch)
|
|
|
67 |
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
|
68 |
self.nn.fit(self.embeddings)
|
69 |
self.fitted = True
|
70 |
+
|
|
|
71 |
def __call__(self, text, return_data=True):
|
72 |
inp_emb = self.use([text])
|
73 |
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
|
74 |
+
|
75 |
if return_data:
|
76 |
return [self.data[i] for i in neighbors]
|
77 |
else:
|
78 |
return neighbors
|
79 |
+
|
|
|
80 |
def get_text_embedding(self, texts, batch=1000):
|
81 |
embeddings = []
|
82 |
for i in range(0, len(texts), batch):
|
83 |
+
text_batch = texts[i:(i+batch
|
84 |
+
import urllib.request
|
85 |
+
import fitz
|
86 |
+
import re
|
87 |
+
import numpy as np
|
88 |
+
import tensorflow_hub as hub
|
89 |
+
import openai
|
90 |
+
import gradio as gr
|
91 |
+
import os
|
92 |
+
from sklearn.neighbors import NearestNeighbors
|
93 |
+
|
94 |
+
def download_pdf(url, output_path):
|
95 |
+
urllib.request.urlretrieve(url, output_path)
|
96 |
|
97 |
|
98 |
+
def preprocess(text):
|
99 |
+
text = text.replace('\n', ' ')
|
100 |
+
text = re.sub('\s+', ' ', text)
|
|
|
|
|
101 |
return text
|
102 |
|
103 |
+
|
104 |
+
def pdf_to_text(path, start_page=1, end_page=None):
|
105 |
+
doc = fitz.open(path)
|
106 |
+
total_pages = doc.page_count
|
107 |
+
|
108 |
+
if end_page is None:
|
109 |
+
end_page = total_pages
|
110 |
+
|
111 |
+
text_list = []
|
112 |
+
|
113 |
+
for i in range(start_page-1, end_page):
|
114 |
+
text = doc.load_page(i).get_text("text")
|
115 |
+
text = preprocess(text)
|
116 |
+
text_list.append(text)
|
117 |
+
|
118 |
+
doc.close()
|
119 |
+
return text_list
|
120 |
+
|
121 |
+
|
122 |
+
def text_to_chunks(texts, word_length=150, start_page=1):
|
123 |
+
text_toks = [t.split(' ') for t in texts]
|
124 |
+
page_nums = []
|
125 |
+
chunks = []
|
126 |
+
|
127 |
+
for idx, words in enumerate(text_toks):
|
128 |
+
for i in range(0, len(words), word_length):
|
129 |
+
chunk = words[i:i+word_length]
|
130 |
+
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
|
131 |
+
len(text_toks) != (idx+1)):
|
132 |
+
text_toks[idx+1] = chunk + text_toks[idx+1]
|
133 |
+
continue
|
134 |
+
chunk = ' '.join(chunk).strip()
|
135 |
+
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
|
136 |
+
chunks.append(chunk)
|
137 |
return chunks
|
138 |
|
139 |
|
140 |
+
class SemanticSearch:
|
141 |
|
142 |
+
def __init__(self):
|
143 |
+
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
|
144 |
+
self.fitted = False
|
145 |
+
|
146 |
+
def fit(self, data, batch=1000, n_neighbors=5):
|
147 |
+
self.data = data
|
148 |
+
self.embeddings = self.get_text_embedding(data, batch=batch)
|
149 |
+
n_neighbors = min(n_neighbors, len(self.embeddings))
|
150 |
+
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
|
151 |
+
self.nn.fit(self.embeddings)
|
152 |
+
self.fitted = True
|
153 |
+
|
154 |
+
def __call__(self, text, return_data=True):
|
155 |
+
inp_emb = self.use([text])
|
156 |
+
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
|
157 |
+
|
158 |
+
if return_data:
|
159 |
+
return [self.data[i] for i in neighbors]
|
160 |
+
else:
|
161 |
+
return neighbors
|
162 |
+
|
163 |
+
def get_text_embedding(self, texts, batch=1000):
|
164 |
+
embeddings = []
|
165 |
+
for i in range(0, len(texts), batch):
|
166 |
+
text_batch = texts[i:(i+batch
|
167 |
+
emb_batch = self.use(text_batch)
|
168 |
+
embeddings.append(emb_batch)
|
169 |
+
embeddings = np.vstack(embeddings)
|
170 |
+
return embeddings
|
171 |
|
172 |
|
173 |
+
def load_recommender(path, start_page=1):
|
174 |
global recommender
|
175 |
+
texts = pdf_to_text(path, start_page=start_page)
|
176 |
+
chunks = text_to_chunks(texts, start_page=start_page)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
recommender.fit(chunks)
|
|
|
178 |
return 'Corpus Loaded.'
|
179 |
|
180 |
|
181 |
+
def generate_text(openAI_key, prompt, engine="text-davinci-003"):
|
182 |
openai.api_key = openAI_key
|
183 |
+
completions = openai.Completion.create(
|
184 |
+
engine=engine,
|
185 |
+
prompt=prompt,
|
|
|
|
|
|
|
186 |
max_tokens=512,
|
187 |
n=1,
|
188 |
stop=None,
|
189 |
temperature=0.7,
|
190 |
)
|
191 |
+
message = completions.choices[0].text
|
192 |
return message
|
193 |
|
194 |
|
|
|
198 |
prompt += 'search results:\n\n'
|
199 |
for c in topn_chunks:
|
200 |
prompt += c + '\n\n'
|
201 |
+
|
202 |
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
|
203 |
+
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
|
204 |
+
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
|
205 |
+
"with the same name, create separate answers for each. Only include information found in the results and "\
|
206 |
+
"don't add any additional information. Make sure the answer is correct and don't output false content. "\
|
207 |
+
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
|
208 |
+
"search results which has nothing to do with the question. Only answer what is asked. The "\
|
209 |
+
"answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
|
210 |
+
|
211 |
prompt += f"Query: {question}\nAnswer:"
|
212 |
+
answer = generate_text(openAI_key, prompt, "text-davinci-003")
|
213 |
return answer
|
214 |
|
215 |
|
216 |
+
def question_answer(url, file, question, openAI_key):
|
217 |
+
if openAI_key.strip() == '':
|
218 |
+
return '[ERROR]: Please enter your Open AI Key. Get your key here: https://platform.openai.com/account/api-keys'
|
219 |
+
if url.strip() == '' and file is None:
|
220 |
+
return '[ERROR]: Both URL and PDF are empty. Provide at least one.'
|
221 |
+
|
222 |
+
if url.strip() != '' and file is not None:
|
223 |
+
return '[ERROR]: Both URL and PDF are provided. Please provide only one (either URL or PDF).'
|
224 |
|
225 |
if url.strip() != '':
|
226 |
glob_url = url
|
227 |
download_pdf(glob_url, 'corpus.pdf')
|
228 |
+
load_recommender('corpus.pdf')
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
else:
|
231 |
+
old_file_name = file.name
|
232 |
+
file_name = file.name
|
233 |
+
file_name = file_name[:-12] + file_name[-4:]
|
234 |
+
os.rename(old_file_name, file_name)
|
235 |
+
load_recommender(file_name)
|
236 |
|
237 |
+
if question.strip() == '':
|
238 |
+
return '[ERROR]: Question field is empty'
|
239 |
|
240 |
+
return generate_answer(question, openAI_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
|
243 |
recommender = SemanticSearch()
|
244 |
|
245 |
+
title = 'PDF GPT'
|
246 |
+
description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
with gr.Interface(fn=question_answer, inputs
|
249 |
+
=[url, file, question, openAI_key], outputs=[answer], title=title, description=description) as iface:
|
250 |
+
iface.launch()
|
251 |
|
252 |
|