Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,57 +11,6 @@ from tempfile import NamedTemporaryFile
|
|
11 |
|
12 |
openAI_key = os.environ['OpenAPI']
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
def download_pdf(url, output_path):
|
19 |
-
urllib.request.urlretrieve(url, output_path)
|
20 |
-
|
21 |
-
|
22 |
-
def preprocess(text):
|
23 |
-
text = text.replace('\n', ' ')
|
24 |
-
text = re.sub('\s+', ' ', text)
|
25 |
-
return text
|
26 |
-
|
27 |
-
|
28 |
-
def pdf_to_text(path, start_page=1, end_page=None):
|
29 |
-
doc = fitz.open(path)
|
30 |
-
total_pages = doc.page_count
|
31 |
-
|
32 |
-
if end_page is None:
|
33 |
-
end_page = total_pages
|
34 |
-
|
35 |
-
text_list = []
|
36 |
-
|
37 |
-
for i in range(start_page-1, end_page):
|
38 |
-
text = doc.load_page(i).get_text("text")
|
39 |
-
text = preprocess(text)
|
40 |
-
text_list.append(text)
|
41 |
-
|
42 |
-
doc.close()
|
43 |
-
return text_list
|
44 |
-
|
45 |
-
|
46 |
-
def text_to_chunks(texts, word_length=150, start_page=1):
|
47 |
-
text_toks = [t.split(' ') for t in texts]
|
48 |
-
page_nums = []
|
49 |
-
chunks = []
|
50 |
-
|
51 |
-
for idx, words in enumerate(text_toks):
|
52 |
-
for i in range(0, len(words), word_length):
|
53 |
-
chunk = words[i:i+word_length]
|
54 |
-
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
|
55 |
-
len(text_toks) != (idx+1)):
|
56 |
-
text_toks[idx+1] = chunk + text_toks[idx+1]
|
57 |
-
continue
|
58 |
-
chunk = ' '.join(chunk).strip()
|
59 |
-
chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"'
|
60 |
-
chunks.append(chunk)
|
61 |
-
return chunks
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
class SemanticSearch:
|
66 |
|
67 |
def __init__(self):
|
@@ -98,57 +47,29 @@ class SemanticSearch:
|
|
98 |
return embeddings
|
99 |
|
100 |
|
101 |
-
|
102 |
-
#def load_recommender(path, start_page=1):
|
103 |
-
# global recommender
|
104 |
-
# texts = pdf_to_text(path, start_page=start_page)
|
105 |
-
# chunks = text_to_chunks(texts, start_page=start_page)
|
106 |
-
# recommender.fit(chunks)
|
107 |
-
# return 'Corpus Loaded.'
|
108 |
-
|
109 |
-
# The modified function generates embeddings based on PDF file name and page number and checks if the embeddings file exists before loading or generating it.
|
110 |
-
|
111 |
-
def load_recommender(path, start_page=1):
|
112 |
global recommender
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
texts = pdf_to_text(path, start_page=start_page)
|
123 |
-
chunks = text_to_chunks(texts, start_page=start_page)
|
124 |
recommender.fit(chunks)
|
125 |
np.save(embeddings_file, recommender.embeddings)
|
126 |
return 'Corpus Loaded.'
|
127 |
|
128 |
|
129 |
-
|
130 |
-
def generate_text(openAI_key,prompt, engine="text-davinci-003"):
|
131 |
-
openai.api_key = openAI_key
|
132 |
-
completions = openai.Completion.create(
|
133 |
-
engine=engine,
|
134 |
-
prompt=prompt,
|
135 |
-
max_tokens=512,
|
136 |
-
n=1,
|
137 |
-
stop=None,
|
138 |
-
temperature=0.7,
|
139 |
-
)
|
140 |
-
message = completions.choices[0].text
|
141 |
-
return message
|
142 |
-
|
143 |
-
def process_file(file):
|
144 |
-
temp_file = NamedTemporaryFile(delete=False, suffix='.pdf')
|
145 |
-
file.save(temp_file.name)
|
146 |
-
temp_file.close()
|
147 |
-
return temp_file.name
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
def generate_text2(openAI_key, prompt, engine="text-davinci-003"):
|
152 |
openai.api_key = openAI_key
|
153 |
messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
|
154 |
{'role': 'user', 'content': prompt}]
|
@@ -164,7 +85,8 @@ def generate_text2(openAI_key, prompt, engine="text-davinci-003"):
|
|
164 |
message = completions.choices[0].message['content']
|
165 |
return message
|
166 |
|
167 |
-
|
|
|
168 |
topn_chunks = recommender(question)
|
169 |
prompt = ""
|
170 |
prompt += 'search results:\n\n'
|
@@ -173,93 +95,74 @@ def generate_answer(question,openAI_key):
|
|
173 |
|
174 |
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
|
175 |
"Make sure the answer is correct and don't output false content. "\
|
176 |
-
"
|
177 |
|
178 |
prompt += f"Query: {question}\nAnswer:"
|
179 |
-
answer = generate_text(openAI_key, prompt,"
|
180 |
return answer
|
181 |
|
182 |
-
def unique_filename(file_name):
|
183 |
-
counter = 1
|
184 |
-
new_file_name = file_name
|
185 |
-
while os.path.isfile(new_file_name):
|
186 |
-
name, ext = os.path.splitext(file_name)
|
187 |
-
new_file_name = f"{name}_{counter}{ext}"
|
188 |
-
counter += 1
|
189 |
-
return new_file_name
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
if url.strip() == '' and file == None:
|
196 |
-
return '[ERROR]: Both URL and PDF is empty. Provide at least one.', False
|
197 |
-
|
198 |
-
if url.strip() != '' and file != None:
|
199 |
-
return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).', False
|
200 |
|
201 |
if url.strip() != '':
|
202 |
glob_url = url
|
203 |
download_pdf(glob_url, 'corpus.pdf')
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
|
215 |
-
|
|
|
|
|
216 |
|
217 |
if question.strip().lower() == 'exit':
|
218 |
return '', False
|
219 |
|
220 |
answer = generate_answer(question, openAI_key)
|
221 |
return answer, True # Assuming the function returns an answer in all other cases
|
222 |
-
|
223 |
-
|
224 |
-
def main_loop(url: str, file: str, question: str):
|
225 |
-
answer, cont = question_answer(url, file, question, openAI_key)
|
226 |
-
return answer, cont
|
227 |
|
228 |
|
229 |
def on_click(*args):
|
230 |
-
answer.value = main_loop(url.value,
|
231 |
|
232 |
|
233 |
recommender = SemanticSearch()
|
234 |
|
235 |
title = 'Cognitive pdfGPT'
|
236 |
-
description = """ Why use Cognitive
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
|
242 |
|
243 |
with gr.Blocks() as demo:
|
244 |
-
|
245 |
-
|
246 |
-
gr.Markdown(description)
|
247 |
|
248 |
-
|
249 |
|
250 |
with gr.Group():
|
251 |
-
|
252 |
-
url=gr.Textbox(label=' ')
|
253 |
-
question=gr.Textbox(label='🔤 Enter your question here 🔤')
|
254 |
-
btn=gr.Button(value='Submit')
|
255 |
btn.style(full_width=False)
|
256 |
|
257 |
with gr.Group():
|
258 |
gr.Image("logo.jpg")
|
259 |
answer = gr.Textbox(label='The answer to your question is :')
|
260 |
|
261 |
-
btn.click(main_loop, inputs=[url,
|
262 |
|
263 |
|
264 |
|
265 |
demo.launch()
|
|
|
|
11 |
|
12 |
openAI_key = os.environ['OpenAPI']
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class SemanticSearch:
|
15 |
|
16 |
def __init__(self):
|
|
|
47 |
return embeddings
|
48 |
|
49 |
|
50 |
+
def load_recommender(paths, start_page=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
global recommender
|
52 |
+
chunks = []
|
53 |
+
for path in paths:
|
54 |
+
pdf_file = os.path.basename(path)
|
55 |
+
embeddings_file = f"{pdf_file}_{start_page}.npy"
|
56 |
+
|
57 |
+
if os.path.isfile(embeddings_file):
|
58 |
+
embeddings = np.load(embeddings_file)
|
59 |
+
recommender.embeddings = embeddings
|
60 |
+
recommender.fitted = True
|
61 |
+
print("Embeddings loaded from file")
|
62 |
+
continue
|
63 |
+
|
64 |
+
texts = pdf_to_text(path, start_page=start_page)
|
65 |
+
chunks.extend(text_to_chunks(texts, start_page=start_page))
|
66 |
|
|
|
|
|
67 |
recommender.fit(chunks)
|
68 |
np.save(embeddings_file, recommender.embeddings)
|
69 |
return 'Corpus Loaded.'
|
70 |
|
71 |
|
72 |
+
def generate_text(openAI_key, prompt, engine="gpt-3.5-turbo"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
openai.api_key = openAI_key
|
74 |
messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
|
75 |
{'role': 'user', 'content': prompt}]
|
|
|
85 |
message = completions.choices[0].message['content']
|
86 |
return message
|
87 |
|
88 |
+
|
89 |
+
def generate_answer(question, openAI_key):
|
90 |
topn_chunks = recommender(question)
|
91 |
prompt = ""
|
92 |
prompt += 'search results:\n\n'
|
|
|
95 |
|
96 |
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
|
97 |
"Make sure the answer is correct and don't output false content. "\
|
98 |
+
"Answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
|
99 |
|
100 |
prompt += f"Query: {question}\nAnswer:"
|
101 |
+
answer = generate_text(openAI_key, prompt, "gpt-3.5-turbo")
|
102 |
return answer
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
def main_loop(url: str, files: list, question:
|
106 |
+
str, openAI_key):
|
107 |
+
paths = []
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
if url.strip() != '':
|
110 |
glob_url = url
|
111 |
download_pdf(glob_url, 'corpus.pdf')
|
112 |
+
paths.append('corpus.pdf')
|
113 |
+
if files is not None and len(files) > 0:
|
114 |
+
for file in files:
|
115 |
+
old_file_name = file.name
|
116 |
+
file_name = old_file_name[:-12] + old_file_name[-4:]
|
117 |
+
file_name = unique_filename(file_name) # Ensure the new file name is unique
|
118 |
|
119 |
+
# Copy the content of the old file to the new file and delete the old file
|
120 |
+
with open(old_file_name, 'rb') as src, open(file_name, 'wb') as dst:
|
121 |
+
shutil.copyfileobj(src, dst)
|
122 |
+
os.remove(old_file_name)
|
123 |
|
124 |
+
paths.append(file_name)
|
125 |
+
|
126 |
+
load_recommender(paths)
|
127 |
|
128 |
if question.strip().lower() == 'exit':
|
129 |
return '', False
|
130 |
|
131 |
answer = generate_answer(question, openAI_key)
|
132 |
return answer, True # Assuming the function returns an answer in all other cases
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
|
135 |
def on_click(*args):
|
136 |
+
answer.value = main_loop(url.value, files.value, question.value)
|
137 |
|
138 |
|
139 |
recommender = SemanticSearch()
|
140 |
|
141 |
title = 'Cognitive pdfGPT'
|
142 |
+
description = """ Why use Cognitive Ask an Expert?
|
143 |
+
This is Cognitive Chat. Here you can upload multiple PDF files and query them as a single corpus of knowledge. 🛑DO NOT USE CONFIDENTIAL INFORMATION """
|
|
|
|
|
|
|
144 |
|
145 |
|
146 |
with gr.Blocks() as demo:
|
147 |
+
gr.Markdown(f'<center><h1>{title}</h1></center>')
|
148 |
+
gr.Markdown(description)
|
|
|
149 |
|
150 |
+
with gr.Row():
|
151 |
|
152 |
with gr.Group():
|
153 |
+
files = gr.Files(label='➡️ Upload your PDFs ⬅️ NO CONFIDENTIAL FILES ', file_types=['.pdf'])
|
154 |
+
url = gr.Textbox(label=' ')
|
155 |
+
question = gr.Textbox(label='🔤 Enter your question here 🔤')
|
156 |
+
btn = gr.Button(value='Submit')
|
157 |
btn.style(full_width=False)
|
158 |
|
159 |
with gr.Group():
|
160 |
gr.Image("logo.jpg")
|
161 |
answer = gr.Textbox(label='The answer to your question is :')
|
162 |
|
163 |
+
btn.click(main_loop, inputs=[url, files, question], outputs=[answer])
|
164 |
|
165 |
|
166 |
|
167 |
demo.launch()
|
168 |
+
|