Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,454 Bytes
5416372 a2e6c05 2cd2fd0 d81ed7c a2e6c05 0887657 d81ed7c 87631e8 757c0a1 dd5a7e3 d0eeeb1 ddb099e 73bd8c6 a2e6c05 1a382ff d81ed7c edb02ce d81ed7c e976361 87631e8 a2e6c05 d81ed7c a2e6c05 64d98eb a2e6c05 e976361 a2e6c05 e976361 a2e6c05 d81ed7c a2e6c05 d81ed7c a2e6c05 d81ed7c 73bd8c6 d0eeeb1 73bd8c6 d0eeeb1 e976361 d81ed7c e976361 d81ed7c b23a519 88a7fc3 18e5a55 72fd759 18e5a55 aea3d83 3b39700 014d21e a2e6c05 da97aea bbb4a8b d81ed7c a2e6c05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
from ui import css, PLACEHOLDER
llm = None
llm_model = None
# hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-34b-GGUF", filename="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf", local_dir = "./models")
# hf_hub_download(repo_id="crusoeai/dolphin-2.9.1-llama-3-70b-GGUF", filename="dolphin-2.9.1-llama-3-70b.Q3_K_M.gguf", local_dir = "./models")
hf_hub_download(repo_id="bartowski/cognitivecomputations_Dolphin3.0-R1-Mistral-24B-GGUF", filename="cognitivecomputations_Dolphin3.0-R1-Mistral-24B-Q8_0.gguf", local_dir = "./models")
# hf_hub_download(repo_id="mradermacher/Dolphin3.0-Mistral-24B-GGUF", filename="Dolphin3.0-Mistral-24B.Q8_0.gguf", local_dir = "./models")
# hf_hub_download(repo_id="kroonen/dolphin-2.9.2-Phi-3-Medium-GGUF", filename="dolphin-2.9.2-Phi-3-Medium-Q6_K.gguf", local_dir = "./models")
hf_hub_download(repo_id="cognitivecomputations/dolphin-2.9.2-qwen2-72b-gguf", filename="qwen2-Q3_K_M.gguf", local_dir = "./models")
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
llm_model=model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt="You are Dolphin, an AI assistant that helps humanity, trained to specialize in reasoning and first-principles analysis. When responding, always format your replies using <think>{reasoning}</think>{answer}. Use at least 6 reasoning steps and perform a root cause analysis before answering. However, if the answer is very easy and requires little thought, you may leave the <think></think> block empty. Your responses should be detailed, structured with rich Markdown formatting, and engaging with emojis. Be extensive in your explanations, just as the greatest scientific minds would be. Always reason through the problem first, unless it's trivial, in which case you may answer directly.",
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False)
outputs = ""
for output in stream:
outputs += output
yield outputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
'cognitivecomputations_Dolphin3.0-R1-Mistral-24B-Q8_0.gguf',
'qwen2-Q3_K_M.gguf'
], value="cognitivecomputations_Dolphin3.0-R1-Mistral-24B-Q8_0.gguf", label="Model"),
gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#0f172a",
block_background_fill_dark="#0f172a",
block_border_width="1px",
block_title_background_fill_dark="#070d1b",
input_background_fill_dark="#0c1425",
button_secondary_background_fill_dark="#070d1b",
border_color_accent_dark="#21293b",
border_color_primary_dark="#21293b",
background_fill_secondary_dark="#0f172a",
color_accent_soft_dark="transparent"
),
css=css,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
description="Cognitive Computation: Chat Dolphin 🐬",
chatbot=gr.Chatbot(
scale=1,
placeholder=PLACEHOLDER,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch()
|