File size: 5,454 Bytes
5416372
a2e6c05
 
2cd2fd0
 
 
 
 
 
d81ed7c
a2e6c05
0887657
d81ed7c
87631e8
 
757c0a1
dd5a7e3
d0eeeb1
 
ddb099e
73bd8c6
a2e6c05
1a382ff
d81ed7c
 
 
edb02ce
d81ed7c
 
 
e976361
 
87631e8
 
 
 
 
 
 
 
 
 
 
 
 
a2e6c05
d81ed7c
a2e6c05
 
64d98eb
a2e6c05
 
 
 
 
e976361
 
 
a2e6c05
e976361
a2e6c05
d81ed7c
a2e6c05
d81ed7c
a2e6c05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d81ed7c
 
 
 
73bd8c6
d0eeeb1
73bd8c6
d0eeeb1
e976361
d81ed7c
 
 
 
 
 
e976361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d81ed7c
 
b23a519
 
 
88a7fc3
18e5a55
72fd759
18e5a55
aea3d83
3b39700
014d21e
 
a2e6c05
 
 
 
 
 
da97aea
bbb4a8b
 
 
 
 
d81ed7c
 
 
a2e6c05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
from ui import css, PLACEHOLDER

llm = None
llm_model = None
# hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-34b-GGUF", filename="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf",  local_dir = "./models")
# hf_hub_download(repo_id="crusoeai/dolphin-2.9.1-llama-3-70b-GGUF", filename="dolphin-2.9.1-llama-3-70b.Q3_K_M.gguf",  local_dir = "./models")
hf_hub_download(repo_id="bartowski/cognitivecomputations_Dolphin3.0-R1-Mistral-24B-GGUF", filename="cognitivecomputations_Dolphin3.0-R1-Mistral-24B-Q8_0.gguf",  local_dir = "./models")
# hf_hub_download(repo_id="mradermacher/Dolphin3.0-Mistral-24B-GGUF", filename="Dolphin3.0-Mistral-24B.Q8_0.gguf",  local_dir = "./models")
# hf_hub_download(repo_id="kroonen/dolphin-2.9.2-Phi-3-Medium-GGUF", filename="dolphin-2.9.2-Phi-3-Medium-Q6_K.gguf",  local_dir = "./models")
hf_hub_download(repo_id="cognitivecomputations/dolphin-2.9.2-qwen2-72b-gguf", filename="qwen2-Q3_K_M.gguf",  local_dir = "./models")

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    global llm
    global llm_model

    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model=model
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt="You are Dolphin, an AI assistant that helps humanity, trained to specialize in reasoning and first-principles analysis. When responding, always format your replies using <think>{reasoning}</think>{answer}. Use at least 6 reasoning steps and perform a root cause analysis before answering. However, if the answer is very easy and requires little thought, you may leave the <think></think> block empty. Your responses should be detailed, structured with rich Markdown formatting, and engaging with emojis. Be extensive in your explanations, just as the greatest scientific minds would be. Always reason through the problem first, unless it's trivial, in which case you may answer directly.",
        predefined_messages_formatter_type=MessagesFormatterType.CHATML,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    stream = agent.get_chat_response(message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False)
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
            'cognitivecomputations_Dolphin3.0-R1-Mistral-24B-Q8_0.gguf',
            'qwen2-Q3_K_M.gguf'
        ], value="cognitivecomputations_Dolphin3.0-R1-Mistral-24B-Q8_0.gguf", label="Model"),
        gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
        body_background_fill_dark="#0f172a",
        block_background_fill_dark="#0f172a",
        block_border_width="1px",
        block_title_background_fill_dark="#070d1b",
        input_background_fill_dark="#0c1425",
        button_secondary_background_fill_dark="#070d1b",
        border_color_accent_dark="#21293b",
        border_color_primary_dark="#21293b",
        background_fill_secondary_dark="#0f172a",
        color_accent_soft_dark="transparent"
    ),
    css=css,
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    description="Cognitive Computation: Chat Dolphin 🐬",
    chatbot=gr.Chatbot(
        scale=1,
        placeholder=PLACEHOLDER,
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch()