chat / app.py
pabloce's picture
Update app.py
e4c3785 verified
raw
history blame
4.58 kB
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
from ui import css, PLACEHOLDER
llm = None
llm_model = None
# hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-34b-GGUF", filename="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf", local_dir = "./models")
# hf_hub_download(repo_id="crusoeai/dolphin-2.9.1-llama-3-70b-GGUF", filename="dolphin-2.9.1-llama-3-70b.Q3_K_M.gguf", local_dir = "./models")
hf_hub_download(repo_id="mradermacher/Dolphin3.0-Mistral-24B-GGUF", filename="Dolphin3.0-Mistral-24B.Q6_K.gguf", local_dir = "./models")
# hf_hub_download(repo_id="kroonen/dolphin-2.9.2-Phi-3-Medium-GGUF", filename="dolphin-2.9.2-Phi-3-Medium-Q6_K.gguf", local_dir = "./models")
hf_hub_download(repo_id="cognitivecomputations/dolphin-2.9.2-qwen2-72b-gguf", filename="qwen2-Q3_K_M.gguf", local_dir = "./models")
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
llm_model=model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt="You are Dolphin an AI assistant that helps humanity.",
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False)
outputs = ""
for output in stream:
outputs += output
yield outputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
'Dolphin3.0-Mistral-24B.Q6_K.gguf',
'qwen2-Q3_K_M.gguf'
], value="Dolphin3.0-Mistral-24B.Q6_K.gguf", label="Model"),
gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#0f172a",
block_background_fill_dark="#0f172a",
block_border_width="1px",
block_title_background_fill_dark="#070d1b",
input_background_fill_dark="#0c1425",
button_secondary_background_fill_dark="#070d1b",
border_color_accent_dark="#21293b",
border_color_primary_dark="#21293b",
background_fill_secondary_dark="#0f172a",
color_accent_soft_dark="transparent"
),
css=css,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
description="Cognitive Computation: Chat Dolphin 🐬",
chatbot=gr.Chatbot(
scale=1,
placeholder=PLACEHOLDER,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch()