Spaces:
Running
Running
Commit
Β·
cac6844
1
Parent(s):
101e122
first commit
Browse files- README.md +5 -6
- app.py +368 -0
- assets/pricing.json +212 -0
- assets/text_content.py +62 -0
- requirements.txt +5 -0
- src/collect_data.py +152 -0
- src/filter_utils.py +133 -0
- src/process_data.py +206 -0
README.md
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description: find the best LLM from multiple configurations
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: LLM-Calculator
|
3 |
+
emoji: π
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
from gradio_rangeslider import RangeSlider
|
5 |
+
import calendar
|
6 |
+
import datetime
|
7 |
+
import numpy as np
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
|
11 |
+
from src.filter_utils import filter, filter_cols
|
12 |
+
from src.process_data import merge_data
|
13 |
+
import assets.text_content as tc
|
14 |
+
|
15 |
+
"""
|
16 |
+
CONSTANTS
|
17 |
+
"""
|
18 |
+
# For restarting the gradio application every 24 Hrs
|
19 |
+
TIME = 86400 # in seconds # Reload will not work locally - requires HFToken # The app launches locally as expected - only without the reload utility
|
20 |
+
|
21 |
+
"""
|
22 |
+
AUTO RESTART HF SPACE
|
23 |
+
"""
|
24 |
+
HF_TOKEN = os.environ.get("H4_TOKEN", None)
|
25 |
+
api = HfApi()
|
26 |
+
|
27 |
+
def restart_space():
|
28 |
+
api.restart_space(repo_id=tc.HF_REPO, token=HF_TOKEN)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
# Main Leaderboard containing everything
|
33 |
+
# text_leaderboard = pd.read_csv(os.path.join('assets', 'merged_data.csv'))
|
34 |
+
text_leaderboard = merge_data()
|
35 |
+
text_leaderboard = text_leaderboard.sort_values(by=tc.CLEMSCORE, ascending=False)
|
36 |
+
|
37 |
+
# When displaying latency values
|
38 |
+
text_leaderboard[tc.LATENCY] = text_leaderboard[tc.LATENCY].round(1)
|
39 |
+
text_leaderboard[tc.CLEMSCORE] = text_leaderboard[tc.CLEMSCORE].round(1)
|
40 |
+
|
41 |
+
open_weight_df = text_leaderboard[text_leaderboard[tc.OPEN_WEIGHT] == True]
|
42 |
+
if not open_weight_df.empty: # Check if filtered df is non-empty
|
43 |
+
# Get max parameter size, ignoring NaN values
|
44 |
+
params = open_weight_df[tc.PARAMS].dropna()
|
45 |
+
max_parameter_size = params.max() if not params.empty else 0
|
46 |
+
|
47 |
+
# Short leaderboard containing fixed columns
|
48 |
+
short_leaderboard = filter_cols(text_leaderboard)
|
49 |
+
# html_table = short_leaderboard.to_html(escape=False, index=False)
|
50 |
+
|
51 |
+
## Extract data
|
52 |
+
langs = []
|
53 |
+
licenses = []
|
54 |
+
ip_prices = []
|
55 |
+
op_prices = []
|
56 |
+
latencies = []
|
57 |
+
parameters = []
|
58 |
+
contexts = []
|
59 |
+
dates = []
|
60 |
+
|
61 |
+
for i in range(len(text_leaderboard)):
|
62 |
+
lang_splits = text_leaderboard.iloc[i][tc.LANGS].split(',')
|
63 |
+
lang_splits = [s.strip() for s in lang_splits]
|
64 |
+
langs += lang_splits
|
65 |
+
license_name = text_leaderboard.iloc[i][tc.LICENSE_NAME]
|
66 |
+
|
67 |
+
licenses.append(license_name)
|
68 |
+
ip_prices.append(text_leaderboard.iloc[i][tc.INPUT])
|
69 |
+
op_prices.append(text_leaderboard.iloc[i][tc.OUTPUT])
|
70 |
+
latencies.append(text_leaderboard.iloc[i][tc.LATENCY])
|
71 |
+
parameters.append(text_leaderboard.iloc[i][tc.PARAMS])
|
72 |
+
contexts.append(text_leaderboard.iloc[i][tc.CONTEXT])
|
73 |
+
dates.append(text_leaderboard.iloc[i][tc.RELEASE_DATE])
|
74 |
+
|
75 |
+
|
76 |
+
langs = list(set(langs))
|
77 |
+
langs.sort()
|
78 |
+
|
79 |
+
licenses = list(set(licenses))
|
80 |
+
licenses.sort()
|
81 |
+
|
82 |
+
max_input_price = max(ip_prices)
|
83 |
+
max_output_price = max(op_prices)
|
84 |
+
max_latency = text_leaderboard[tc.LATENCY].max().round(3)
|
85 |
+
|
86 |
+
min_parameters = 0 if pd.isna(min(parameters)) else min(parameters)
|
87 |
+
max_parameter = max_parameter_size
|
88 |
+
parameter_step = 1
|
89 |
+
|
90 |
+
min_context = min(contexts)
|
91 |
+
max_context = max(contexts)
|
92 |
+
context_step = 8
|
93 |
+
|
94 |
+
min_date = min(dates)
|
95 |
+
max_date = max(dates)
|
96 |
+
|
97 |
+
# Date settings
|
98 |
+
today = datetime.date.today()
|
99 |
+
end_year = today.year
|
100 |
+
start_year = tc.START_YEAR
|
101 |
+
|
102 |
+
YEARS = list(range(int(start_year), int(end_year)+1))
|
103 |
+
YEARS = [str(y) for y in YEARS]
|
104 |
+
MONTHS = list(calendar.month_name[1:])
|
105 |
+
|
106 |
+
TITLE = tc.TITLE
|
107 |
+
|
108 |
+
llm_calc_app = gr.Blocks()
|
109 |
+
with llm_calc_app:
|
110 |
+
|
111 |
+
gr.HTML(TITLE)
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
|
115 |
+
#####################################
|
116 |
+
# First Column
|
117 |
+
####################################
|
118 |
+
## Language Select
|
119 |
+
with gr.Column(scale=2):
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
lang_dropdown = gr.Dropdown(
|
123 |
+
choices=langs,
|
124 |
+
value=[],
|
125 |
+
multiselect=True,
|
126 |
+
label="Languages π£οΈ"
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
## Release Date range selection
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
start_year_dropdown = gr.Dropdown(
|
134 |
+
choices = YEARS,
|
135 |
+
value=[],
|
136 |
+
label="Model Release - Year ποΈ"
|
137 |
+
)
|
138 |
+
start_month_dropdown = gr.Dropdown(
|
139 |
+
choices = MONTHS,
|
140 |
+
value=[],
|
141 |
+
label="Month π"
|
142 |
+
)
|
143 |
+
|
144 |
+
end_year_dropdown = gr.Dropdown(
|
145 |
+
choices = YEARS,
|
146 |
+
value=[],
|
147 |
+
label="End - Year ποΈ"
|
148 |
+
)
|
149 |
+
end_month_dropdown = gr.Dropdown(
|
150 |
+
choices = MONTHS,
|
151 |
+
value=[],
|
152 |
+
label="Month π"
|
153 |
+
)
|
154 |
+
|
155 |
+
## Price selection
|
156 |
+
with gr.Row():
|
157 |
+
|
158 |
+
input_pricing_slider = RangeSlider(
|
159 |
+
minimum=0,
|
160 |
+
maximum=max_input_price,
|
161 |
+
value=(0, max_input_price),
|
162 |
+
label="π²/1M input tokens",
|
163 |
+
elem_id="double-slider-3"
|
164 |
+
)
|
165 |
+
|
166 |
+
output_pricing_slider = RangeSlider(
|
167 |
+
minimum=0,
|
168 |
+
maximum=max_output_price,
|
169 |
+
value=(0, max_output_price),
|
170 |
+
label="π²/1M output tokens",
|
171 |
+
elem_id="double-slider-4"
|
172 |
+
)
|
173 |
+
|
174 |
+
# License selection
|
175 |
+
with gr.Row():
|
176 |
+
license_checkbox = gr.CheckboxGroup(
|
177 |
+
choices=licenses,
|
178 |
+
value=licenses,
|
179 |
+
label="License π‘οΈ",
|
180 |
+
)
|
181 |
+
|
182 |
+
#############################################################
|
183 |
+
# Second Column
|
184 |
+
#############################################################
|
185 |
+
with gr.Column(scale=1):
|
186 |
+
|
187 |
+
####### parameters ###########
|
188 |
+
with gr.Row():
|
189 |
+
parameter_slider = RangeSlider(
|
190 |
+
minimum=0,
|
191 |
+
maximum=max_parameter,
|
192 |
+
label=f"Parameters π {int(min_parameters)}B - {int(max_parameter)}B+",
|
193 |
+
elem_id="double-slider-1",
|
194 |
+
step=parameter_step
|
195 |
+
)
|
196 |
+
|
197 |
+
|
198 |
+
########### Context range ################
|
199 |
+
|
200 |
+
with gr.Row():
|
201 |
+
context_slider = RangeSlider(
|
202 |
+
minimum=0,
|
203 |
+
maximum=max_context,
|
204 |
+
label="Context (k) π",
|
205 |
+
elem_id="double-slider-2",
|
206 |
+
step=context_step
|
207 |
+
)
|
208 |
+
|
209 |
+
############# Modality selection checkbox ###############
|
210 |
+
with gr.Row():
|
211 |
+
multimodal_checkbox = gr.CheckboxGroup(
|
212 |
+
choices=[tc.TEXT, tc.SINGLE_IMG, tc.MULT_IMG, tc.AUDIO, tc.VIDEO],
|
213 |
+
value=[],
|
214 |
+
label="Modalities ππ·π§π¬",
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
# ############### Model Type Checkbox ###############
|
219 |
+
with gr.Row():
|
220 |
+
open_weight_checkbox = gr.CheckboxGroup(
|
221 |
+
choices=[tc.OPEN, tc.COMM],
|
222 |
+
value=[tc.OPEN, tc.COMM],
|
223 |
+
label="Model Type π πΌ",
|
224 |
+
)
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
with gr.Row():
|
229 |
+
"""
|
230 |
+
Main Leaderboard Row
|
231 |
+
"""
|
232 |
+
|
233 |
+
leaderboard_table = gr.Dataframe(
|
234 |
+
value=short_leaderboard,
|
235 |
+
elem_id="text-leaderboard-table",
|
236 |
+
interactive=False,
|
237 |
+
visible=True,
|
238 |
+
datatype=['str', 'number', 'number', 'date', 'number', 'number', 'number', 'number', 'markdown']
|
239 |
+
)
|
240 |
+
|
241 |
+
dummy_leaderboard_table = gr.Dataframe(
|
242 |
+
value=text_leaderboard,
|
243 |
+
elem_id="dummy-leaderboard-table",
|
244 |
+
interactive=False,
|
245 |
+
visible=False
|
246 |
+
)
|
247 |
+
|
248 |
+
lang_dropdown.change(
|
249 |
+
filter,
|
250 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
251 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
252 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
253 |
+
[leaderboard_table],
|
254 |
+
queue=True
|
255 |
+
)
|
256 |
+
|
257 |
+
parameter_slider.change(
|
258 |
+
filter,
|
259 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
260 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
261 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
262 |
+
[leaderboard_table],
|
263 |
+
queue=True
|
264 |
+
)
|
265 |
+
|
266 |
+
input_pricing_slider.change(
|
267 |
+
filter,
|
268 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
269 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
270 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
271 |
+
[leaderboard_table],
|
272 |
+
queue=True
|
273 |
+
)
|
274 |
+
|
275 |
+
output_pricing_slider.change(
|
276 |
+
filter,
|
277 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
278 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
279 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
280 |
+
[leaderboard_table],
|
281 |
+
queue=True
|
282 |
+
)
|
283 |
+
|
284 |
+
multimodal_checkbox.change(
|
285 |
+
filter,
|
286 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
287 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
288 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
289 |
+
[leaderboard_table],
|
290 |
+
queue=True
|
291 |
+
)
|
292 |
+
|
293 |
+
open_weight_checkbox.change(
|
294 |
+
filter,
|
295 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
296 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
297 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
298 |
+
[leaderboard_table],
|
299 |
+
queue=True
|
300 |
+
)
|
301 |
+
|
302 |
+
context_slider.change(
|
303 |
+
filter,
|
304 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
305 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
306 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
307 |
+
[leaderboard_table],
|
308 |
+
queue=True
|
309 |
+
)
|
310 |
+
|
311 |
+
start_year_dropdown.change(
|
312 |
+
filter,
|
313 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
314 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
315 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
316 |
+
[leaderboard_table],
|
317 |
+
queue=True
|
318 |
+
)
|
319 |
+
|
320 |
+
start_month_dropdown.change(
|
321 |
+
filter,
|
322 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
323 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
324 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
325 |
+
[leaderboard_table],
|
326 |
+
queue=True
|
327 |
+
)
|
328 |
+
|
329 |
+
end_year_dropdown.change(
|
330 |
+
filter,
|
331 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
332 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
333 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
334 |
+
[leaderboard_table],
|
335 |
+
queue=True
|
336 |
+
)
|
337 |
+
|
338 |
+
end_month_dropdown.change(
|
339 |
+
filter,
|
340 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
341 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
342 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
343 |
+
[leaderboard_table],
|
344 |
+
queue=True
|
345 |
+
)
|
346 |
+
|
347 |
+
license_checkbox.change(
|
348 |
+
filter,
|
349 |
+
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
350 |
+
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
351 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
352 |
+
[leaderboard_table],
|
353 |
+
queue=True
|
354 |
+
)
|
355 |
+
|
356 |
+
llm_calc_app.load()
|
357 |
+
llm_calc_app.queue()
|
358 |
+
|
359 |
+
# Add scheduler to auto-restart the HF space at every TIME interval and update every component each time
|
360 |
+
scheduler = BackgroundScheduler()
|
361 |
+
scheduler.add_job(restart_space, 'interval', seconds=TIME)
|
362 |
+
scheduler.start()
|
363 |
+
|
364 |
+
# Log current start time and scheduled restart time
|
365 |
+
print(datetime.datetime.now())
|
366 |
+
print(f"Scheduled restart at {datetime.datetime.now() + datetime.timedelta(seconds=TIME)}")
|
367 |
+
|
368 |
+
llm_calc_app.launch()
|
assets/pricing.json
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"model_id": "gpt-4-1106-vision-preview",
|
4 |
+
"input": "10$",
|
5 |
+
"output": "30$"
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"model_id": "gpt-4o-2024-05-13",
|
9 |
+
"input": "5$",
|
10 |
+
"output": "15$"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"model_id": "gpt-4o-2024-08-06",
|
14 |
+
"input": "3.750$",
|
15 |
+
"output": "15$"
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"model_id": "gpt-4o-mini-2024-07-18",
|
19 |
+
"input": "0.300$",
|
20 |
+
"output": "1.200$"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"model_id": "gpt-4-turbo-2024-04-09",
|
24 |
+
"input": "10$",
|
25 |
+
"output": "30$"
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"model_id": "gpt-4-1106-preview",
|
29 |
+
"input": "",
|
30 |
+
"output": ""
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"model_id": "gpt-4-0125-preview",
|
34 |
+
"input": "10$",
|
35 |
+
"output": "30$"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"model_id": "o1-preview-2024-09-12",
|
39 |
+
"input": "15$",
|
40 |
+
"output": "60$"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"model_id": "o1-mini-2024-09-12",
|
44 |
+
"input": "3$",
|
45 |
+
"output": "12$"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"model_id": "gpt-3.5-turbo-0125",
|
49 |
+
"input": "0.5$",
|
50 |
+
"output": "1.5$"
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"model_id": "gpt-4-0613",
|
54 |
+
"input": "",
|
55 |
+
"output": ""
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"model_id": "gpt-4-0314",
|
59 |
+
"input": "",
|
60 |
+
"output": ""
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"model_id": "gpt-3.5-turbo-1106",
|
64 |
+
"input": "1$",
|
65 |
+
"output": "2$"
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"model_id": "gpt-3.5-turbo-0613",
|
69 |
+
"input": "1.5$",
|
70 |
+
"output": "2$"
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"model_id": "command",
|
74 |
+
"input": "",
|
75 |
+
"output": ""
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"model_id": "command-light",
|
79 |
+
"input": "",
|
80 |
+
"output": ""
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"model_id": "claude-v1.3",
|
84 |
+
"input": "",
|
85 |
+
"output": ""
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"model_id": "claude-v1.3-100k",
|
89 |
+
"input": "",
|
90 |
+
"output": ""
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"model_id": "claude-instant-1.2",
|
94 |
+
"input": "",
|
95 |
+
"output": ""
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"model_id": "claude-2",
|
99 |
+
"input": "8$",
|
100 |
+
"output": "24$"
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"model_id": "claude-2.1",
|
104 |
+
"input": "8$",
|
105 |
+
"output": "24$"
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"model_id": "claude-3-opus-20240229",
|
109 |
+
"input": "15$",
|
110 |
+
"output": "75$"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"model_id": "claude-3-sonnet-20240229",
|
114 |
+
"input": "3$",
|
115 |
+
"output": "15$"
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"model_id": "claude-3-haiku-20240307",
|
119 |
+
"input": "0.25$",
|
120 |
+
"output": "1.25$"
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"model_id": "claude-3-5-sonnet-20240620",
|
124 |
+
"input": "3$",
|
125 |
+
"output": "15$"
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"model_id": "claude-3-5-haiku-20241022",
|
129 |
+
"input": "0.8$",
|
130 |
+
"output": "4$"
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"model_id": "claude-3-5-sonnet-20241022",
|
134 |
+
"input": "3$",
|
135 |
+
"output": "15$"
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"model_id": "gemini-1.0-pro-001",
|
139 |
+
"input": "0.5$",
|
140 |
+
"output": "1.5$"
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"model_id": "gemini-1.0-pro-002",
|
144 |
+
"input": "0.5$",
|
145 |
+
"output": "1.5$"
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"model_id": "gemini-1.0-pro-vision-latest",
|
149 |
+
"input": "0.5$",
|
150 |
+
"output": "1.5$"
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"model_id": "gemini-1.5-flash-001",
|
154 |
+
"input": "0.075$",
|
155 |
+
"output": "0.3$"
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"model_id": "gemini-1.5-pro-001",
|
159 |
+
"input": "1.25$",
|
160 |
+
"output": "5$"
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"model_id": "gemini-1.5-pro-002",
|
164 |
+
"input": "1.25$",
|
165 |
+
"output": "5$"
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"model_id": "gemini-1.5-flash-002",
|
169 |
+
"input": "0.075$",
|
170 |
+
"output": "0.3$"
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"model_id": "gemini-1.5-flash-8b-001",
|
174 |
+
"input": "0.0375$",
|
175 |
+
"output": "0.15$"
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"model_id": "gemini-2.0-flash-exp",
|
179 |
+
"input": "0$",
|
180 |
+
"output": "0$"
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"model_id": "luminous-supreme-control",
|
184 |
+
"input": "",
|
185 |
+
"output": ""
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"model_id": "luminous-supreme",
|
189 |
+
"input": "",
|
190 |
+
"output": ""
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"model_id": "luminous-extended",
|
194 |
+
"input": "",
|
195 |
+
"output": ""
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"model_id": "luminous-base",
|
199 |
+
"input": "",
|
200 |
+
"output": ""
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"model_id": "luminous-base",
|
204 |
+
"input": "",
|
205 |
+
"output": ""
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"model_id": "luminous-base",
|
209 |
+
"input": "",
|
210 |
+
"output": ""
|
211 |
+
}
|
212 |
+
]
|
assets/text_content.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# Data Sources
|
4 |
+
CLEMBENCH_RUNS_REPO = "https://raw.githubusercontent.com/clembench/clembench-runs/main/"
|
5 |
+
REGISTRY_URL = "https://raw.githubusercontent.com/clp-research/clembench/refs/heads/refactor_model_registry/backends/model_registry.json"
|
6 |
+
BENCHMARK_FILE = "benchmark_runs.json"
|
7 |
+
|
8 |
+
LATENCY_FOLDER = os.path.join("Addenda", "Latency")
|
9 |
+
RESULT_FILE = "results.csv"
|
10 |
+
LATENCY_SUFFIX = "_latency.csv"
|
11 |
+
|
12 |
+
# Setup Column Names
|
13 |
+
# Note - Changing this does not affect the already generated csv `merged_data.csv`
|
14 |
+
# Run `src/process_data.py` for this
|
15 |
+
|
16 |
+
DEFAULT_MODEL_NAME = "Unnamed: 0"
|
17 |
+
DEFAULT_CLEMSCORE = "-, clemscore"
|
18 |
+
|
19 |
+
MODEL_NAME = "Model Name"
|
20 |
+
CLEMSCORE = "Clemscore"
|
21 |
+
LATENCY = "Latency (s)"
|
22 |
+
PARAMS = "Parameters (B)"
|
23 |
+
DUMMY_PARAMS = "Parameters Dummy (B)"
|
24 |
+
RELEASE_DATE = 'Release Date'
|
25 |
+
OPEN_WEIGHT = 'Open Weight'
|
26 |
+
LANGS = "Languages"
|
27 |
+
CONTEXT = "Context Size (k)"
|
28 |
+
LICENSE_NAME = "License Name"
|
29 |
+
LICENSE_URL = "License URL"
|
30 |
+
SINGLE_IMG = "Single Image"
|
31 |
+
MULT_IMG = "Multi Image"
|
32 |
+
TEXT = "Text-Only"
|
33 |
+
AUDIO = "Audio"
|
34 |
+
VIDEO = "Video"
|
35 |
+
INPUT = "Input $/1M tokens"
|
36 |
+
OUTPUT = "Output $/1M tokens"
|
37 |
+
LICENSE = "License"
|
38 |
+
TEMP_DATE = "Temp Date"
|
39 |
+
|
40 |
+
# UI - HF Sapce
|
41 |
+
OPEN = "Open-Weight"
|
42 |
+
COMM = "Commercial"
|
43 |
+
|
44 |
+
TITLE = """<h1 align="center" id="space-title"> LLM Calculator βοΈβ‘ ππ°</h1> <p align="center">Performance, latency metrics are based on <a href="https://clembench.github.io/" target="_blank">clembench</a> .</p>"""
|
45 |
+
|
46 |
+
HF_REPO = "colab-potsdam/llm-calculator"
|
47 |
+
# Date Picker (set as Dropdown until datetime object is fixed)
|
48 |
+
START_YEAR = "2020"
|
49 |
+
MONTH_MAP = {
|
50 |
+
"January": 1,
|
51 |
+
"February": 2,
|
52 |
+
"March": 3,
|
53 |
+
"April": 4,
|
54 |
+
"May": 5,
|
55 |
+
"June": 6,
|
56 |
+
"July": 7,
|
57 |
+
"August": 8,
|
58 |
+
"September": 9,
|
59 |
+
"October": 10,
|
60 |
+
"November": 11,
|
61 |
+
"December": 12
|
62 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.2.3
|
2 |
+
gradio_rangeslider==0.0.7
|
3 |
+
gradio==4.44.1
|
4 |
+
pycountry==24.6.1
|
5 |
+
apscheduler==3.10.4
|
src/collect_data.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Collect data from the multiple sources and create a base datafranme for the LLMCalculator table
|
3 |
+
Latency - https://github.com/clembench/clembench-runs/tree/main/Addenda/Latency
|
4 |
+
Pricing - pricing.json
|
5 |
+
Model info - https://github.com/kushal-10/clembench/blob/feat/registry/backends/model_registry_updated.json
|
6 |
+
"""
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import json
|
10 |
+
import requests
|
11 |
+
from assets.text_content import CLEMBENCH_RUNS_REPO, REGISTRY_URL, BENCHMARK_FILE, LATENCY_FOLDER, RESULT_FILE, LATENCY_SUFFIX
|
12 |
+
import os
|
13 |
+
|
14 |
+
def validate_request(url: str, response) -> bool:
|
15 |
+
"""
|
16 |
+
Validate if an HTTP request was successful.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
url (str): The URL that was requested
|
20 |
+
response (requests.Response): The response object from the request
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
bool: True if request was successful (status code 200), False otherwise
|
24 |
+
"""
|
25 |
+
|
26 |
+
if response.status_code != 200:
|
27 |
+
print(f"Failed to read file - {url}. Status Code: {response.status_code}")
|
28 |
+
return False
|
29 |
+
return True
|
30 |
+
|
31 |
+
def fetch_benchmark_data(benchmark: str = "text", version_names: list = []) -> tuple:
|
32 |
+
"""
|
33 |
+
Fetch and parse benchmark results and latency data from CSV files.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
benchmark (str): Type of benchmark to fetch ('text' or 'multimodal')
|
37 |
+
version_names (list): List of version names to search through, sorted by latest first
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
tuple[pd.DataFrame, pd.DataFrame]: A tuple containing:
|
41 |
+
- results_df: DataFrame with benchmark results
|
42 |
+
- latency_df: DataFrame with latency measurements
|
43 |
+
Returns (None, None) if no matching version is found or requests fail
|
44 |
+
|
45 |
+
Raises:
|
46 |
+
requests.RequestException: If there's an error fetching the data
|
47 |
+
pd.errors.EmptyDataError: If CSV file is empty
|
48 |
+
pd.errors.ParserError: If CSV parsing fails
|
49 |
+
"""
|
50 |
+
for v in version_names:
|
51 |
+
# Check if version matches benchmark type
|
52 |
+
is_multimodal = 'multimodal' in v
|
53 |
+
if (benchmark == "multimodal") != is_multimodal:
|
54 |
+
continue
|
55 |
+
|
56 |
+
# Construct URLs
|
57 |
+
results_url = os.path.join(CLEMBENCH_RUNS_REPO, v, RESULT_FILE)
|
58 |
+
latency_url = os.path.join(CLEMBENCH_RUNS_REPO, LATENCY_FOLDER, v + LATENCY_SUFFIX)
|
59 |
+
|
60 |
+
try:
|
61 |
+
results = requests.get(results_url)
|
62 |
+
latency = requests.get(latency_url)
|
63 |
+
|
64 |
+
if validate_request(results_url, results) and validate_request(latency_url, latency):
|
65 |
+
# Convert the CSV content to pandas DataFrames
|
66 |
+
results_df = pd.read_csv(pd.io.common.StringIO(results.text))
|
67 |
+
latency_df = pd.read_csv(pd.io.common.StringIO(latency.text))
|
68 |
+
return results_df, latency_df
|
69 |
+
|
70 |
+
except requests.RequestException as e:
|
71 |
+
print(f"Error fetching data for version {v}: {e}")
|
72 |
+
except pd.errors.EmptyDataError:
|
73 |
+
print(f"Error: Empty CSV file found for version {v}")
|
74 |
+
except pd.errors.ParserError:
|
75 |
+
print(f"Error: Unable to parse CSV data for version {v}")
|
76 |
+
|
77 |
+
return None, None
|
78 |
+
|
79 |
+
def fetch_version_metadata() -> tuple:
|
80 |
+
"""
|
81 |
+
Fetch and process benchmark metadata from the Clembench GitHub repository.
|
82 |
+
|
83 |
+
The data is sourced from: https://github.com/clembench/clembench-runs
|
84 |
+
Configure the repository path in src/assets/text_content/CLEMBENCH_RUNS_REPO
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: A tuple containing:
|
88 |
+
- mm_result: Multimodal benchmark results
|
89 |
+
- mm_latency: Multimodal latency data
|
90 |
+
- text_result: Text benchmark results
|
91 |
+
- text_latency: Text latency data
|
92 |
+
Returns (None, None, None, None) if the request fails
|
93 |
+
"""
|
94 |
+
json_url = CLEMBENCH_RUNS_REPO + BENCHMARK_FILE
|
95 |
+
response = requests.get(json_url)
|
96 |
+
|
97 |
+
# Check if the JSON file request was successful
|
98 |
+
if not validate_request(json_url, response):
|
99 |
+
return None, None, None, None
|
100 |
+
|
101 |
+
json_data = response.json()
|
102 |
+
versions = json_data['versions']
|
103 |
+
|
104 |
+
# Sort the versions in benchmark by latest first
|
105 |
+
version_names = sorted(
|
106 |
+
[ver['version'] for ver in versions],
|
107 |
+
key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))),
|
108 |
+
reverse=True
|
109 |
+
)
|
110 |
+
|
111 |
+
# Latency is in seconds
|
112 |
+
mm_result, mm_latency = fetch_benchmark_data("multimodal", version_names)
|
113 |
+
text_result, text_latency = fetch_benchmark_data("text", version_names)
|
114 |
+
|
115 |
+
return mm_latency, mm_result, text_latency, text_result
|
116 |
+
|
117 |
+
def fetch_registry_data() -> dict:
|
118 |
+
"""
|
119 |
+
Fetch and parse model registry data from the Clembench registry URL.
|
120 |
+
|
121 |
+
The data is sourced from the model registry defined in REGISTRY_URL.
|
122 |
+
Contains information about various LLM models including their specifications
|
123 |
+
and capabilities.
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
dict: Dictionary containing model registry data.
|
127 |
+
Returns None if the request fails or the JSON is invalid.
|
128 |
+
|
129 |
+
Raises:
|
130 |
+
requests.RequestException: If there's an error fetching the data
|
131 |
+
json.JSONDecodeError: If the response cannot be parsed as JSON
|
132 |
+
"""
|
133 |
+
try:
|
134 |
+
response = requests.get(REGISTRY_URL)
|
135 |
+
if not validate_request(REGISTRY_URL, response):
|
136 |
+
return None
|
137 |
+
|
138 |
+
return response.json()
|
139 |
+
|
140 |
+
except requests.RequestException as e:
|
141 |
+
print(f"Error fetching registry data: {e}")
|
142 |
+
except json.JSONDecodeError as e:
|
143 |
+
print(f"Error parsing registry JSON: {e}")
|
144 |
+
|
145 |
+
return None
|
146 |
+
|
147 |
+
if __name__=="__main__":
|
148 |
+
fetch_version_metadata()
|
149 |
+
registry_data = fetch_registry_data()
|
150 |
+
print(registry_data[0])
|
151 |
+
|
152 |
+
|
src/filter_utils.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Utility functions for filtering the dataframe
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import assets.text_content as tc
|
5 |
+
import calendar
|
6 |
+
from typing import Union, List
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
current_year = str(datetime.now().year)
|
10 |
+
|
11 |
+
def filter_cols(df):
|
12 |
+
|
13 |
+
df = df[[
|
14 |
+
tc.MODEL_NAME,
|
15 |
+
tc.CLEMSCORE,
|
16 |
+
tc.INPUT,
|
17 |
+
tc.OUTPUT,
|
18 |
+
tc.LATENCY,
|
19 |
+
tc.CONTEXT,
|
20 |
+
tc.PARAMS,
|
21 |
+
tc.RELEASE_DATE,
|
22 |
+
tc.LICENSE
|
23 |
+
]]
|
24 |
+
|
25 |
+
return df
|
26 |
+
|
27 |
+
|
28 |
+
def convert_date_components_to_timestamp(year: str, month: str) -> int:
|
29 |
+
"""Convert year and month strings to timestamp."""
|
30 |
+
# Create a datetime object for the first day of the month
|
31 |
+
date_str = f"{year}-{month:02d}-01"
|
32 |
+
return int(pd.to_datetime(date_str).timestamp())
|
33 |
+
|
34 |
+
def filter_by_date(df: pd.DataFrame,
|
35 |
+
start_year, start_month,
|
36 |
+
end_year, end_month,
|
37 |
+
date_column: str = tc.RELEASE_DATE) -> pd.DataFrame:
|
38 |
+
"""
|
39 |
+
Filter DataFrame by date range using separate year and month components.
|
40 |
+
"""
|
41 |
+
# All lists are passed at once, so set default values here instead of passing them in args- Overwritten by empty lists
|
42 |
+
if not start_year:
|
43 |
+
start_year = tc.START_YEAR
|
44 |
+
if not end_year:
|
45 |
+
end_year = current_year
|
46 |
+
|
47 |
+
if not start_month:
|
48 |
+
start_month = "January"
|
49 |
+
if not end_month:
|
50 |
+
end_month = "December"
|
51 |
+
|
52 |
+
try:
|
53 |
+
# Convert string inputs to integers for date creation
|
54 |
+
start_timestamp = convert_date_components_to_timestamp(
|
55 |
+
int(start_year),
|
56 |
+
int(tc.MONTH_MAP[start_month])
|
57 |
+
)
|
58 |
+
|
59 |
+
end_timestamp = convert_date_components_to_timestamp(
|
60 |
+
int(end_year),
|
61 |
+
int(tc.MONTH_MAP[end_month])
|
62 |
+
)
|
63 |
+
|
64 |
+
# Convert the DataFrame's date column to timestamps for comparison
|
65 |
+
date_timestamps = pd.to_datetime(df[date_column]).apply(lambda x: int(x.timestamp()))
|
66 |
+
|
67 |
+
# Filter the DataFrame
|
68 |
+
return df[
|
69 |
+
(date_timestamps >= start_timestamp) &
|
70 |
+
(date_timestamps <= end_timestamp)
|
71 |
+
]
|
72 |
+
except (ValueError, TypeError) as e:
|
73 |
+
print(f"Error processing dates: {e}")
|
74 |
+
return df # Return unfiltered DataFrame if there's an error
|
75 |
+
|
76 |
+
|
77 |
+
def filter(df, language_list, parameters, input_price, output_price, multimodal,
|
78 |
+
context, open_weight,
|
79 |
+
start_year, start_month, end_year, end_month,
|
80 |
+
license ):
|
81 |
+
|
82 |
+
|
83 |
+
if not df.empty: # Check if df is non-empty
|
84 |
+
df = df[df[tc.LANGS].apply(lambda x: all(lang in x for lang in language_list))]
|
85 |
+
|
86 |
+
if not df.empty:
|
87 |
+
df = df[(df[tc.DUMMY_PARAMS] >= parameters[0]) & (df[tc.DUMMY_PARAMS] <= parameters[1])]
|
88 |
+
|
89 |
+
if not df.empty: # Check if df is non-empty
|
90 |
+
df = df[(df[tc.INPUT] >= input_price[0]) & (df[tc.INPUT] <= input_price[1])]
|
91 |
+
|
92 |
+
if not df.empty: # Check if df is non-empty
|
93 |
+
df = df[(df[tc.OUTPUT] >= output_price[0]) & (df[tc.OUTPUT] <= output_price[1])]
|
94 |
+
|
95 |
+
if not df.empty: # Check if df is non-empty
|
96 |
+
if tc.TEXT in multimodal:
|
97 |
+
df = df[(df[tc.SINGLE_IMG] == False) & (df[tc.MULT_IMG] == False) & (df[tc.AUDIO] == False) & (df[tc.VIDEO] == False) ]
|
98 |
+
if tc.SINGLE_IMG in multimodal:
|
99 |
+
df = df[df[tc.SINGLE_IMG] == True]
|
100 |
+
if tc.MULT_IMG in multimodal:
|
101 |
+
df = df[df[tc.MULT_IMG] == True]
|
102 |
+
if tc.AUDIO in multimodal:
|
103 |
+
df = df[df[tc.AUDIO] == True]
|
104 |
+
if tc.VIDEO in multimodal:
|
105 |
+
df = df[df[tc.VIDEO] == True]
|
106 |
+
|
107 |
+
if not df.empty: # Check if df is non-empty
|
108 |
+
# Convert 'Context Size (k)' to numeric, coercing errors to NaN
|
109 |
+
context_size = pd.to_numeric(df['Context Size (k)'], errors='coerce').fillna(0)
|
110 |
+
|
111 |
+
# Apply the filter
|
112 |
+
df = df[(context_size >= context[0]) & (context_size <= context[1])]
|
113 |
+
|
114 |
+
if not df.empty: # Check if df is non-empty
|
115 |
+
if tc.OPEN in open_weight and tc.COMM not in open_weight:
|
116 |
+
df = df[df[tc.OPEN_WEIGHT] == True]
|
117 |
+
elif tc.COMM in open_weight and tc.OPEN not in open_weight:
|
118 |
+
df = df[df[tc.OPEN_WEIGHT] == False]
|
119 |
+
elif tc.OPEN not in open_weight and tc.COMM not in open_weight:
|
120 |
+
# Return empty DataFrame with same columns
|
121 |
+
df = pd.DataFrame(columns=df.columns)
|
122 |
+
|
123 |
+
if not df.empty: # Check if df is non-empty
|
124 |
+
df = df[df[tc.LICENSE_NAME].apply(lambda x: any(lic in x for lic in license))]
|
125 |
+
|
126 |
+
df = filter_by_date(df, start_year, start_month, end_year, end_month, tc.TEMP_DATE)
|
127 |
+
|
128 |
+
df = filter_cols(df)
|
129 |
+
df = df.sort_values(by=tc.CLEMSCORE, ascending=False)
|
130 |
+
|
131 |
+
return df # Return the filtered dataframe
|
132 |
+
|
133 |
+
|
src/process_data.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import pycountry
|
5 |
+
import re
|
6 |
+
|
7 |
+
from src.collect_data import fetch_version_metadata, fetch_registry_data
|
8 |
+
import assets.text_content as tc
|
9 |
+
|
10 |
+
PRICING_PATH = os.path.join('assets', 'pricing.json')
|
11 |
+
|
12 |
+
# Convert parameters to float, handling both B and T suffixes
|
13 |
+
def convert_parameters(param):
|
14 |
+
if pd.isna(param) or param == '':
|
15 |
+
return None
|
16 |
+
param = str(param)
|
17 |
+
if 'T' in param:
|
18 |
+
return float(param.replace('T', '')) * 1000
|
19 |
+
return float(param.replace('B', ''))
|
20 |
+
|
21 |
+
# Clean price strings by removing '$' and handling empty strings
|
22 |
+
def clean_price(price):
|
23 |
+
if pd.isna(price) or price == '':
|
24 |
+
return None
|
25 |
+
return float(price.replace('$', ''))
|
26 |
+
|
27 |
+
# Handle language mapping for both string and list inputs
|
28 |
+
def map_languages(languages):
|
29 |
+
if isinstance(languages, float) and pd.isna(languages):
|
30 |
+
return None
|
31 |
+
|
32 |
+
def get_language_name(lang):
|
33 |
+
# Clean and standardize the language code
|
34 |
+
lang = str(lang).strip().lower()
|
35 |
+
|
36 |
+
# Try to find the language
|
37 |
+
try:
|
38 |
+
# First try as language code (en, fr, etc.)
|
39 |
+
language = pycountry.languages.get(alpha_2=lang)
|
40 |
+
if not language:
|
41 |
+
# Try as language name (English, French, etc.)
|
42 |
+
language = pycountry.languages.get(name=lang.capitalize())
|
43 |
+
|
44 |
+
return language.name if language else lang
|
45 |
+
except (AttributeError, LookupError):
|
46 |
+
return lang
|
47 |
+
|
48 |
+
# Handle different input types
|
49 |
+
if isinstance(languages, list):
|
50 |
+
lang_list = languages
|
51 |
+
elif isinstance(languages, str):
|
52 |
+
lang_list = [l.strip() for l in languages.split(',')]
|
53 |
+
else:
|
54 |
+
try:
|
55 |
+
lang_list = list(languages)
|
56 |
+
except:
|
57 |
+
return str(languages)
|
58 |
+
|
59 |
+
# Map all languages and join them
|
60 |
+
return ', '.join(get_language_name(lang) for lang in lang_list)
|
61 |
+
|
62 |
+
# Extract multimodality fields
|
63 |
+
def get_multimodality_field(model_data, field):
|
64 |
+
try:
|
65 |
+
return model_data.get('model_config', {}).get('multimodality', {}).get(field, False)
|
66 |
+
except:
|
67 |
+
return False
|
68 |
+
|
69 |
+
def clean_model_name(model_name: str) -> str:
|
70 |
+
"""Clean model name by removing temperature suffix pattern."""
|
71 |
+
# Match pattern like -t0.0--, -t0.7--, -t1.0--, etc.
|
72 |
+
pattern = r'-t[0-1]\.[0-9]--'
|
73 |
+
return re.split(pattern, model_name)[0]
|
74 |
+
|
75 |
+
def merge_data():
|
76 |
+
|
77 |
+
mm_latency_df, mm_result_df, text_latency_df, text_result_df = fetch_version_metadata()
|
78 |
+
registry_data = fetch_registry_data()
|
79 |
+
with open(PRICING_PATH, 'r') as f:
|
80 |
+
pricing_data = json.load(f)
|
81 |
+
|
82 |
+
# Ensure the unnamed column is renamed to 'model'
|
83 |
+
mm_result_df.rename(columns={tc.DEFAULT_MODEL_NAME: 'model', tc.DEFAULT_CLEMSCORE: 'clemscore'}, inplace=True)
|
84 |
+
text_result_df.rename(columns={tc.DEFAULT_MODEL_NAME: 'model', tc.DEFAULT_CLEMSCORE: 'clemscore'}, inplace=True)
|
85 |
+
mm_result_df['model'] = mm_result_df['model'].apply(clean_model_name)
|
86 |
+
text_result_df['model'] = text_result_df['model'].apply(clean_model_name)
|
87 |
+
|
88 |
+
# Merge datasets to compute average values
|
89 |
+
avg_latency_df = pd.concat([mm_latency_df, text_latency_df], axis=0).groupby('model')['latency'].mean().reset_index()
|
90 |
+
avg_clemscore_df = pd.concat([mm_result_df, text_result_df], axis=0).groupby('model')['clemscore'].mean().reset_index()
|
91 |
+
|
92 |
+
# Merge latency, clemscore, registry, and pricing data
|
93 |
+
lat_clem_df = pd.merge(avg_latency_df, avg_clemscore_df, on='model', how='outer')
|
94 |
+
|
95 |
+
# Convert registry_data to DataFrame for easier merging
|
96 |
+
registry_df = pd.DataFrame(registry_data)
|
97 |
+
|
98 |
+
# Extract license info
|
99 |
+
registry_df['license_name'] = registry_df['license'].apply(lambda x: x['name'])
|
100 |
+
registry_df['license_url'] = registry_df['license'].apply(lambda x: x['url'])
|
101 |
+
|
102 |
+
# Add individual multimodality columns
|
103 |
+
registry_df['single_image'] = registry_df.apply(lambda x: get_multimodality_field(x, 'single_image'), axis=1)
|
104 |
+
registry_df['multiple_images'] = registry_df.apply(lambda x: get_multimodality_field(x, 'multiple_images'), axis=1)
|
105 |
+
registry_df['audio'] = registry_df.apply(lambda x: get_multimodality_field(x, 'audio'), axis=1)
|
106 |
+
registry_df['video'] = registry_df.apply(lambda x: get_multimodality_field(x, 'video'), axis=1)
|
107 |
+
|
108 |
+
# Update columns list to include new multimodality fields
|
109 |
+
registry_df = registry_df[[
|
110 |
+
'model_name', 'parameters', 'release_date', 'open_weight',
|
111 |
+
'languages', 'context_size', 'license_name', 'license_url',
|
112 |
+
'single_image', 'multiple_images', 'audio', 'video'
|
113 |
+
]]
|
114 |
+
|
115 |
+
# Merge with previous data
|
116 |
+
merged_df = pd.merge(
|
117 |
+
lat_clem_df,
|
118 |
+
registry_df,
|
119 |
+
left_on='model',
|
120 |
+
right_on='model_name',
|
121 |
+
how='inner'
|
122 |
+
)
|
123 |
+
|
124 |
+
# Update column renaming
|
125 |
+
merged_df = merged_df.rename(columns={
|
126 |
+
'model': tc.MODEL_NAME,
|
127 |
+
'latency': tc.LATENCY,
|
128 |
+
'clemscore': tc.CLEMSCORE,
|
129 |
+
'parameters': tc.PARAMS,
|
130 |
+
'release_date': tc.RELEASE_DATE,
|
131 |
+
'open_weight': tc.OPEN_WEIGHT,
|
132 |
+
'languages': tc.LANGS,
|
133 |
+
'context_size': tc.CONTEXT,
|
134 |
+
'license_name': tc.LICENSE_NAME,
|
135 |
+
'license_url': tc.LICENSE_URL,
|
136 |
+
'single_image': tc.SINGLE_IMG,
|
137 |
+
'multiple_images': tc.MULT_IMG,
|
138 |
+
'audio': tc.AUDIO,
|
139 |
+
'video': tc.VIDEO
|
140 |
+
})
|
141 |
+
|
142 |
+
# Convert pricing_data list to DataFrame
|
143 |
+
pricing_df = pd.DataFrame(pricing_data)
|
144 |
+
pricing_df['input'] = pricing_df['input'].apply(clean_price)
|
145 |
+
pricing_df['output'] = pricing_df['output'].apply(clean_price)
|
146 |
+
|
147 |
+
# Merge pricing data with the existing dataframe
|
148 |
+
merged_df = pd.merge(
|
149 |
+
merged_df,
|
150 |
+
pricing_df,
|
151 |
+
left_on='Model Name',
|
152 |
+
right_on='model_id',
|
153 |
+
how='left'
|
154 |
+
)
|
155 |
+
|
156 |
+
# Drop duplicate model column and rename price columns
|
157 |
+
merged_df = merged_df.drop('model_id', axis=1)
|
158 |
+
merged_df = merged_df.rename(columns={
|
159 |
+
'input': tc.INPUT,
|
160 |
+
'output': tc.OUTPUT
|
161 |
+
})
|
162 |
+
|
163 |
+
# Fill NaN values with 0.0 for pricing columns
|
164 |
+
merged_df[tc.INPUT] = merged_df[tc.INPUT].fillna(0.0)
|
165 |
+
merged_df[tc.OUTPUT] = merged_df[tc.OUTPUT].fillna(0.0)
|
166 |
+
|
167 |
+
# Convert parameters and set to None for commercial models
|
168 |
+
merged_df[tc.PARAMS] = merged_df.apply(
|
169 |
+
lambda row: None if not row[tc.OPEN_WEIGHT] else convert_parameters(row[tc.PARAMS]),
|
170 |
+
axis=1
|
171 |
+
)
|
172 |
+
|
173 |
+
merged_df[tc.LICENSE] = merged_df.apply(
|
174 |
+
lambda row: f'[{row[tc.LICENSE_NAME]}]({row[tc.LICENSE_URL]})', axis=1
|
175 |
+
)
|
176 |
+
merged_df[tc.TEMP_DATE] = merged_df[tc.RELEASE_DATE]
|
177 |
+
|
178 |
+
merged_df[tc.LANGS] = merged_df[tc.LANGS].apply(map_languages)
|
179 |
+
|
180 |
+
# Sort by Clemscore in descending order
|
181 |
+
merged_df = merged_df.sort_values(by=tc.CLEMSCORE, ascending=False)
|
182 |
+
|
183 |
+
# Drop model_name column
|
184 |
+
merged_df.drop(columns=['model_name'], inplace=True)
|
185 |
+
|
186 |
+
# Clean up context and convert to integer
|
187 |
+
merged_df[tc.CONTEXT] = merged_df[tc.CONTEXT].astype(str).str.replace('k', '', regex=False)
|
188 |
+
merged_df[tc.CONTEXT] = pd.to_numeric(merged_df[tc.CONTEXT], errors='coerce').fillna(0).astype(int)
|
189 |
+
|
190 |
+
# Handle commercial model parameters / Set to max of open models
|
191 |
+
# Find the maximum value of tc.PARAMS where tc.OPEN_WEIGHT is True
|
192 |
+
max_params_value = merged_df.loc[merged_df[tc.OPEN_WEIGHT], tc.PARAMS].max()
|
193 |
+
|
194 |
+
# Create a new dummy PARAM column
|
195 |
+
merged_df[tc.DUMMY_PARAMS] = merged_df.apply(
|
196 |
+
lambda row: max_params_value if not row[tc.OPEN_WEIGHT] else row[tc.PARAMS],
|
197 |
+
axis=1
|
198 |
+
)
|
199 |
+
|
200 |
+
return merged_df
|
201 |
+
|
202 |
+
if __name__=='__main__':
|
203 |
+
merged_df = merge_data()
|
204 |
+
# # Save to CSV
|
205 |
+
output_path = os.path.join('assets', 'merged_data.csv')
|
206 |
+
merged_df.to_csv(output_path, index=False)
|