Spaces:
Running
Running
import gradio as gr | |
from evodiff.pretrained import OA_DM_38M, D3PM_UNIFORM_38M, MSA_OA_DM_MAXSUB | |
from evodiff.generate import generate_oaardm, generate_d3pm | |
from evodiff.generate_msa import generate_query_oadm_msa_simple | |
import re | |
def a3m_file(file): | |
return "tmp.a3m" | |
def make_uncond_seq(seq_len, model_type): | |
if model_type == "EvoDiff-Seq-OADM 38M": | |
checkpoint = OA_DM_38M() | |
model, collater, tokenizer, scheme = checkpoint | |
tokeinzed_sample, generated_sequence = generate_oaardm(model, tokenizer, seq_len, batch_size=1, device='cpu') | |
if model_type == "EvoDiff-D3PM-Uniform 38M": | |
checkpoint = D3PM_UNIFORM_38M(return_all=True) | |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint | |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, seq_len, batch_size=1, device='cpu') | |
return generated_sequence | |
def make_cond_seq(seq_len, msa_file, model_type): | |
if model_type == "EvoDiff-MSA": | |
checkpoint = MSA_OA_DM_MAXSUB() | |
model, collater, tokenizer, scheme = checkpoint | |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, n_sequences=64, seq_length=seq_len, device='cpu', selection_type='random') | |
return generated_sequence | |
usg_app = gr.Interface( | |
fn=make_uncond_seq, | |
inputs=[ | |
gr.Slider(10, 100, label = "Sequence Length"), | |
gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], type="value", label = "Model") | |
], | |
outputs="text", | |
title = "Unconditional sequence generation", | |
description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models." | |
) | |
csg_app = gr.Interface( | |
fn=make_cond_seq, | |
inputs=[ | |
gr.Slider(10, 100, label = "Sequence Length"), | |
gr.File(file_types=["a3m"], label = "MSA File"), | |
gr.Dropdown(["EvoDiff-MSA"], type="value", label = "Model") | |
], | |
outputs="text", | |
examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]], | |
title = "Conditional sequence generation", | |
description="Evolutionary guided sequence generation with the `EvoDiff-MSA` model." | |
) | |
with gr.Blocks() as edapp: | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
# EvoDiff | |
## Generation of protein sequences and evolutionary alignments via discrete diffusion models | |
Created By: Microsoft Research [Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, ProfileAva P. Amini, and Kevin K. Yang] | |
Spaces App By: [Colby T. Ford](httos://github.com/colbyford) | |
""" | |
) | |
with gr.Row(): | |
gr.TabbedInterface([usg_app, csg_app], ["Unconditional sequence generation", "Conditional generation"]) | |
if __name__ == "__main__": | |
edapp.launch() |