Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -65,7 +65,7 @@ def display_pdb(path_to_pdb):
|
|
65 |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
66 |
'''
|
67 |
|
68 |
-
def make_uncond_seq(seq_len, model_type):
|
69 |
if model_type == "EvoDiff-Seq-OADM 38M":
|
70 |
checkpoint = OA_DM_38M()
|
71 |
model, collater, tokenizer, scheme = checkpoint
|
@@ -76,21 +76,27 @@ def make_uncond_seq(seq_len, model_type):
|
|
76 |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint
|
77 |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, seq_len, batch_size=1, device='cpu')
|
78 |
|
79 |
-
|
80 |
-
|
|
|
81 |
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
def make_cond_seq(seq_len, msa_file, model_type):
|
85 |
if model_type == "EvoDiff-MSA":
|
86 |
checkpoint = MSA_OA_DM_MAXSUB()
|
87 |
model, collater, tokenizer, scheme = checkpoint
|
88 |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, n_sequences=64, seq_length=seq_len, device='cpu', selection_type='random')
|
89 |
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
-
|
|
|
|
|
94 |
|
95 |
usg_app = gr.Interface(
|
96 |
fn=make_uncond_seq,
|
@@ -111,7 +117,8 @@ csg_app = gr.Interface(
|
|
111 |
inputs=[
|
112 |
gr.Slider(10, 100, label = "Sequence Length"),
|
113 |
gr.File(file_types=["a3m"], label = "MSA File"),
|
114 |
-
gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model")
|
|
|
115 |
],
|
116 |
outputs=[
|
117 |
"text",
|
|
|
65 |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
66 |
'''
|
67 |
|
68 |
+
def make_uncond_seq(seq_len, model_type, pred_structure):
|
69 |
if model_type == "EvoDiff-Seq-OADM 38M":
|
70 |
checkpoint = OA_DM_38M()
|
71 |
model, collater, tokenizer, scheme = checkpoint
|
|
|
76 |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint
|
77 |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, seq_len, batch_size=1, device='cpu')
|
78 |
|
79 |
+
if pred_structure:
|
80 |
+
path_to_pdb = predict_protein(generated_sequence)
|
81 |
+
molhtml = display_pdb(path_to_pdb)
|
82 |
|
83 |
+
return generated_sequence, molhtml
|
84 |
+
else:
|
85 |
+
return generated_sequence
|
86 |
|
87 |
+
def make_cond_seq(seq_len, msa_file, model_type, pred_structure):
|
88 |
if model_type == "EvoDiff-MSA":
|
89 |
checkpoint = MSA_OA_DM_MAXSUB()
|
90 |
model, collater, tokenizer, scheme = checkpoint
|
91 |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, n_sequences=64, seq_length=seq_len, device='cpu', selection_type='random')
|
92 |
|
93 |
+
if pred_structure:
|
94 |
+
path_to_pdb = predict_protein(generated_sequence)
|
95 |
+
molhtml = display_pdb(path_to_pdb)
|
96 |
|
97 |
+
return generated_sequence, molhtml
|
98 |
+
else:
|
99 |
+
return generated_sequence
|
100 |
|
101 |
usg_app = gr.Interface(
|
102 |
fn=make_uncond_seq,
|
|
|
117 |
inputs=[
|
118 |
gr.Slider(10, 100, label = "Sequence Length"),
|
119 |
gr.File(file_types=["a3m"], label = "MSA File"),
|
120 |
+
gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model"),
|
121 |
+
gr.Checkbox(value=False, label = "Predict Structure?")
|
122 |
],
|
123 |
outputs=[
|
124 |
"text",
|