Spaces:
Running
on
T4
Running
on
T4
File size: 5,026 Bytes
33d9042 4c1c145 3796c5b 33d9042 9488c79 33d9042 da61538 33d9042 c4d7f81 85d5a02 c4d7f81 33d9042 c4d7f81 33d9042 c4d7f81 51505df c4d7f81 33d9042 c4d7f81 a71b09f 9d5b6f7 c4d7f81 5123302 c4d7f81 33d9042 c4d7f81 decaf77 c4d7f81 5033513 5fd796b c4d7f81 33d9042 c4d7f81 33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import spaces
import tempfile
import wave
import gradio as gr
import os
from whisperspeech.pipeline import Pipeline
import torch
import soundfile as sf
import numpy as np
import torch.nn.functional as F
from whisperspeech.languages import LANGUAGES
from whisperspeech.pipeline import Pipeline
from whisperspeech.utils import resampler
title = """# 🙋🏻♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech
You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech)
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗
### How to Use
Input text with the language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print. Scroll down and try the api <3 Gradio.
"""
# Function to parse the multilingual input text
def parse_multilingual_text(input_text):
pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)"
segments = re.findall(pattern, input_text)
return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()]
@spaces.GPU
def generate_segment_audio(text, lang, speaker_url, pipe):
stoks = pipe.t2s.generate([text], lang=[lang])
audio_data = pipe.generate(stoks, speaker_url, lang)
resample_audio = resampler(newsr=24000)
audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k']
audio_np = audio_data_resampled.cpu().numpy()
return audio_np
# Function to concatenate audio segments
def concatenate_audio_segments(segments):
concatenated_audio = np.concatenate(segments, axis=0)
concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio))
return np.asarray(concatenated_audio, dtype=np.float32)
@spaces.GPU
def whisper_speech_demo(multilingual_text, speaker_audio):
segments = parse_multilingual_text(multilingual_text)
if not segments:
return None, "No valid language segments found. Please use the format: <lang> text"
pipe = Pipeline()
speaker_url = speaker_audio if speaker_audio is not None else None
audio_segments = []
for lang, text in segments:
audio_np = generate_segment_audio(text, lang, speaker_url, pipe)
audio_segments.append(audio_np)
concatenated_audio = concatenate_audio_segments(audio_segments)
audio_stereo = np.stack((concatenated_audio, concatenated_audio), axis=-1)
audio_stereo = audio_stereo.reshape(-1, 2)
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
sf.write(tmp_file.name, audio_stereo, 24000, format='WAV', subtype='PCM_16')
return tmp_file.name
with gr.Blocks() as demo:
gr.Markdown(title)
output_audio = gr.Audio(label="Generated Speech")
generate_button = gr.Button("Try 🌟Collabora🌬️💬📝WhisperSpeech")
with gr.Row():
text_input = gr.Textbox(label="Enter multilingual text", placeholder="e.g., <en> Hello <fr> Bonjour <es> Hola", examples=["<en> Hello, how are you? <fr> Bonjour, comment ça va?", "<de> Guten Tag <it> Buongiorno <jp> こんにちは"])
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)", sources=["upload", "microphone"], type="filepath", examples=["path/to/tonic.wav"])
with gr.Accordion("Available Languages and Their Tags"):
language_list = "\n".join([f"{lang}: {LANGUAGES[lang]}" for lang in LANGUAGES])
gr.Markdown(language_list)
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio)
demo.launch() |