File size: 28,185 Bytes
33d9042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/4B. Semantic to acoustic token modeling.ipynb.

# %% auto 0
__all__ = ['load_datasets', 'CMLMVisual', 'Rotary', 'rotate_half', 'apply_rotary_pos_emb', 'ResidualAttentionBlock',
           'MultiHeadAttention', 'DelSumDecoder', 'EmbeddingProjector', 'rand', 'Tunables', 'SADelARTransformer']

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 1
import io
import time
import math
import random
import dataclasses

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import profile, record_function, ProfilerActivity, schedule
from fastcore.basics import store_attr
from huggingface_hub import hf_hub_download

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 3
from pathlib import Path
import json
from fastprogress import progress_bar, master_bar
import webdataset as wds

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 4
from .train import *
from .modules import *
from . import vq_stoks

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 8
def rand(start, end):
    return random.random() * (end - start) + start

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 9
def random_trunc(random_trunc_p, atoks_len = 2250, stoks_len = 750):
    atoks_per_second = atoks_len / 30
    def _trunc(samples):
        for s in samples:
            if random.random() < random_trunc_p:
                seconds = rand(0.3, 30)
                s['atoks.npy'] = s['atoks.npy'][:,:math.ceil(seconds * atoks_per_second)]
            s['stoks.npy'] = s['stoks.npy'][:math.ceil(s['atoks.npy'].shape[-1]/atoks_len*stoks_len)]
            yield s
    return _trunc

def pad_samples(atoks_len = 2250, stoks_len = 750, stoks_pad_token = 4096):
    def _pad(samples):
        for s in samples:
            s['stoks.npy'] = F.pad(torch.tensor(s['stoks.npy']), (0, stoks_len - s['stoks.npy'].shape[-1]), value=stoks_pad_token)
            s['atoks.npy'] = F.pad(torch.tensor(s['atoks.npy']), (0, atoks_len - s['atoks.npy'].shape[-1]), value=-100)
            yield s
    return _pad

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 10
def speaker_id_extractor(speaker_map):
    def _extractor(samples):
        for s in samples:
            s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]])
            yield s
    return _extractor

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 14
def load_datasets(
        input:str,             # webdataset folder
        samples:int,           # samples per epoch
        subsample:float=1,     # use a fraction of the files
        val_samples:int=512,
        random_trunc_p:float=0,# probability of truncating the input to less than 30 seconds
        stoks_pad_token=4096,
    ):

    if isinstance(input, (Path, str)):
        path = Path(input)
        if path.is_dir():
            glob = '*-s2a-*.tar.gz'
        else:
            glob = path.name
            path = path.parent
        input = Path(path).glob(glob)
    elif isinstance(input, list):
        pass
    else:
        raise ArgumentError("input should be either a list or a path with an optional glob specifier")
    shards = [str(x) for x in input]

    speakers = set()
    for shard in shards:
        with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines()))
    speakers = {id:i for i,id in enumerate(sorted(speakers))}

    def ds(shards, length):
        ds = wds.WebDataset(wds.ResampledShards(shards)).compose(
            wds.decode(),
            speaker_id_extractor(speakers),
            random_trunc(random_trunc_p) if random_trunc_p > 0 else lambda x: x,
            pad_samples(stoks_pad_token=stoks_pad_token),
            wds.to_tuple('stoks.npy', 'atoks.npy', 'speaker'),
            wds.batched(64),
        )
        ds.speakers = speakers
        ds.total_samples = length
        return ds.compose(wds.slice(length // 64)).with_epoch(length // 64).with_length(length // 64)
    
    return (
        ds(shards[1:], samples),
        ds(shards[:1], val_samples),
    )

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 33
import pylab as plt
import fastprogress
import IPython
import numpy as np

class CMLMVisual:
    """Visualize training progress"""
    def __init__ (self, model, masterbar, total_steps):
        self.model = model
        self.masterbar = masterbar
        self.total_steps = total_steps
        self.epochs = total_steps // masterbar.main_bar.total
        
        gs = plt.GridSpec(3, 1, height_ratios=[2,2,1])
        graph_fig = plt.figure(figsize=(10,6))
        self.graph_fig = graph_fig
        self.loss_p = graph_fig.add_subplot(gs[0])
        self.acc_p = graph_fig.add_subplot(gs[1], sharex=self.loss_p)
        self.acc_p.tick_params('x', labelbottom=False)
        self.lr_p = graph_fig.add_subplot(gs[2], sharex=self.loss_p)
        self.lr_p.tick_params('x', labelbottom=False)
        self.graph_out = None
        
        self.its = []
        self.train_losses = []
        self.val_losses = []
        self.lr_history = []
        self.acc = np.nan
        self.acc_history = []
        self.pacc_history = []
            
    def show(self):
        self.start_t = time.time()
        self.masterbar.write(["samples", "train", "val", "time"], table=True)
        self.graph_out = display(self.graph_fig, display_id=True)
        self.acc_out = display(IPython.display.HTML(''), display_id=True)
    
    def hide(self):
        if self.graph_out is not None:
            self.graph_out.update(IPython.display.HTML(''))
    
    def plot(self):
        loss_p, acc_p, lr_p = self.loss_p, self.acc_p, self.lr_p
        loss_p.clear()
        loss_p.plot(self.its, self.train_losses)
        loss_p.plot(self.its, self.val_losses)
        loss_p.set_xlim(0, self.total_steps)
        loss_p.set_yscale('log')
        acc_p.clear()
        for k in self.acc_history[-1].keys():
            acc_p.plot(self.its, [x[k] for x in self.acc_history], ':')
#         acc_p.plot(self.its, np.stack(self.pacc_history), label=range(len(self.pacc_history[0])))
        lr_p.clear()
        lrs = np.array(self.lr_history)
        lr_p.plot(self.its, lrs)
        self.graph_out.update(self.graph_fig)
    
    def add_data(self, it, lr, train_loss, val_los):
        self.its.append(it)
        self.train_losses.append(train_loss)
        self.val_losses.append(val_los)
        self.lr_history.append(lr)
        metrics = self.model.get_metrics()
        self.acc_history.append(metrics)
#         self.acc_out.update(f"Accuracy: {self.entropy_history[-1]:.2f}")
#         self.pacc_history.append((self.model.pval_true / self.model.pval_total).cpu().numpy())
#         if self.acc_history:
        html  = "<h5>Accuracies:</h5><table>"
        html += "<thead>"+(''.join([f"<td>{k}<td>" for k,x in metrics.items()]))+"</thead>"
        html += "<tr>"+(''.join([f"<td>{x*100:.1f}%<td>" for k,x in metrics.items()]))+"</tr>"
        html += "</table>"
        self.acc_out.update(IPython.display.HTML(html))
        self.plot()

    def add_table_row(self, it, avg_train_loss, val_loss):
        elapsed_t = time.time() - self.start_t
        self.masterbar.write([it, f"{avg_train_loss:.5f}", f"{val_loss:.5f}", fastprogress.core.format_time(elapsed_t)], table=True)
    
    def on_iter(self, bar, it, avg_train_loss, val_loss):
        epoch = math.ceil(it / self.total_steps * self.epochs)
        bar.comment = f"#{epoch}/{self.epochs} loss: {avg_train_loss:.3f} / {val_loss:.3f}"

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 34
# modified from https://blog.eleuther.ai/rotary-embeddings/
import torch

class Rotary(torch.nn.Module):
    def __init__(self, dim, base=10000):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None

    def forward(self, x, seq_dim=1):
        seq_len = x.shape[seq_dim]
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.cos_cached = emb.cos()[None, :, None, :]
            self.sin_cached = emb.sin()[None, :, None, :]
        return self.cos_cached, self.sin_cached


# rotary pos emb helpers:
def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat(
        (-x2, x1), dim=-1
    )

#@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin):
    return (q * cos[:,:q.shape[1]]) + (rotate_half(q) * sin[:,:q.shape[1]]), (k * cos) + (rotate_half(k) * sin)

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 35
from torch import Tensor, nn
import torch.nn.functional as F
from typing import Dict, Iterable, Optional

class ResidualAttentionBlock(nn.Module):
    def __init__(self, n_state: int, n_head: int, cross_attention: bool = False, rope: bool = False,
                 qk_scale: float = 1, ffn_mult: int = 4):
        super().__init__()

        self.attn = MultiHeadAttention(n_state, n_head, qk_scale=qk_scale, rope=rope)
        self.attn_ln = LayerNorm(n_state)

        self.cross_attn = (
            MultiHeadAttention(n_state, n_head, qk_scale=qk_scale, rope=rope) if cross_attention else None
        )
        self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None

        n_mlp = n_state * ffn_mult
        self.mlp = nn.Sequential(
            nn.Linear(n_state, n_mlp), nn.GELU(), nn.Linear(n_mlp, n_state)
        )
        self.mlp_ln = LayerNorm(n_state)
        
    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        causal = False,
        kv_cache: Optional[dict] = None,
    ):
        x = x + self.attn(self.attn_ln(x), causal=causal, kv_cache=kv_cache)[0]
        if self.cross_attn:
            x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
        x = x + self.mlp(self.mlp_ln(x))
        return x
    
class MultiHeadAttention(nn.Module):
    def __init__(self, n_state: int, n_head: int, qk_scale: float = 1, rope: bool = False):
        super().__init__()
        self.n_head = n_head
        self.sqrt_qk_scale = math.sqrt(qk_scale)
        self.query = QueryHead(n_state, n_state)
        self.key = nn.Linear(n_state, n_state, bias=False)
        self.value = nn.Linear(n_state, n_state)
        self.out = nn.Linear(n_state, n_state)
        
        self.rotary = None
        if rope:
            self.rotary = Rotary(n_state // n_head)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        causal = False,
        kv_cache: Optional[dict] = None,
    ):
        q = self.query(x)

        if kv_cache is None or xa is None or self.key not in kv_cache:
            # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
            # otherwise, perform key/value projections for self- or cross-attention as usual.
            k = self.key(x if xa is None else xa)
            v = self.value(x if xa is None else xa)
        else:
            # for cross-attention, calculate keys and values once and reuse in subsequent calls.
            k = kv_cache[self.key]
            v = kv_cache[self.value]

        if self.sqrt_qk_scale != 1:
            q *= self.sqrt_qk_scale
            k *= self.sqrt_qk_scale
        
        wv, qk = self.qkv_attention_pth20(q, k, v, causal)
#         wv, qk = self.qkv_attention_xformers(q, k, v, causal)
        
        return self.out(wv), qk

    def qkv_attention_pth20(
        self, q: Tensor, k: Tensor, v: Tensor, causal = False
    ):
        n_batch, n_ctx, n_state = q.shape
        q = q.view(*q.shape[:2], self.n_head, -1)
        k = k.view(*k.shape[:2], self.n_head, -1)
        v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
        
        #print('before rot:', q.shape, k.shape)
        if self.rotary:
            q, k = apply_rotary_pos_emb(q, k, *self.rotary(k))
        #print(' after rot:', q.shape, k.shape)

        k = k.permute(0, 2, 1, 3)
        q = q.permute(0, 2, 1, 3)
        # modified for better performance under PyTorch 2.0
        wv = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0, is_causal=causal)

        # previously we've returned q@k which we don't have now
        # since it's not actually used anywhere else, let's just keep two return values for compatibility
        return wv.permute(0, 2, 1, 3).flatten(start_dim=2), None

    def qkv_attention_xformers(
        self, q: Tensor, k: Tensor, v: Tensor, causal = False
    ):
        n_batch, n_ctx, n_state = q.shape
        q = q.view(*q.shape[:2], self.n_head, -1)
        k = k.view(*k.shape[:2], self.n_head, -1)
        v = v.view(*v.shape[:2], self.n_head, -1)

        if self.rotary:
            q, k = apply_rotary_pos_emb(q, k, *self.rotary(k))

        bias = xops.LowerTriangularMask() if causal else None
        wv = xops.memory_efficient_attention(q,k,v, attn_bias=bias)

        # previously we've returned q@k which we don't have now
        # since it's not actually used anywhere else, let's just keep two return values for compatibility
        return wv.flatten(start_dim=2), None

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 36
class DelSumDecoder(nn.Module):
    def __init__(self, depth=6, n_head=6, head_width=64, qk_scale=1, ffn_mult=4, length=2250, codes=1024, quantizers=8, linear_heads=True, rope=False, pos_embs=None):
        super().__init__()
        self.length = length
        width = n_head * head_width
        self.width = width
        self.codes = codes
        self.quantizers = quantizers
        self.linear_heads = linear_heads

        self.embeddings = nn.ModuleList([nn.Embedding(codes+1, width) for _ in range(quantizers)])
        if pos_embs is not None:
            self.register_buffer("positional_embedding", pos_embs)
        
        self.layers = nn.ModuleList([
            ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, cross_attention=True, rope=rope) for _ in range(math.floor(depth))
        ])

        self.ln_post = LayerNorm(width)

        if self.linear_heads:
            self.heads = LinearHead(width, (codes+1) * quantizers, bias=False)
        else:
            self.splitter = nn.Sequential(
                nn.Linear(width, width * quantizers),
                nn.GELU(),
            )
            self.heads = nn.ModuleList([
                LinearHead(width, codes+1, bias=True) for _ in range(quantizers)
            ])

    def forward(self, toks, xenc):
        b,_,n = toks.shape
        newn = min(n+1, self.length)
        embs = torch.zeros((b,newn,self.width), dtype=xenc.dtype, device=xenc.device)
        for i in range(self.quantizers):
            embs[:,:i+1] += self.embeddings[i](torch.tensor([self.codes], device=xenc.device))
            if i < n:
                embs[:,i+1:] += self.embeddings[i](toks[:,i,:newn-i-1])

        x = embs.to(xenc.dtype)
    
        for l in self.layers:
            x = l(x, xenc, causal=True)
        x = self.ln_post(x)

        if self.linear_heads:
            logits = self.heads(x).view(b,newn,self.quantizers,self.codes+1).permute(0,2,1,3)
        else:
            split = self.splitter(x).view(b,newn,self.quantizers,self.width)
            logits = torch.stack([self.heads[q](split[:,:,q]) for q in range(self.quantizers)], dim=1)

        return logits
    
class EmbeddingProjector(nn.Linear):
    pass

def rand(start, end):
    return random.random() * (end - start) + start
    
@dataclasses.dataclass
class Tunables:
    init_std :float = 9
    embeddings_std :float = 0.2
    embeddings_lr_scale: float = 10
    output_mult :float = 5.6
    # FIXME: try separate mults for self and cross attention
    query_mult :float = .3
    encoder_depth_ratio :float = 0.25
    linear_heads :bool = False
    rope :bool = True
    
    lr0 :float = 3e-3
    clip_gradient_norm :float = 2
    weight_decay :float = 1e-3
    warmup_steps :float = 2000

    random :bool = False

    def __post_init__(self):
        # randomize the hyperparams if requested
        if self.random:
            self.init_std = 2*10**rand(0,1)
            self.embeddings_std = 10**rand(-1.7,-0.22)
            self.embeddings_lr_scale = 2**rand(2,4)
            self.output_mult = 2**rand(1.5,3)
            self.query_mult = 2**rand(-3,-1.3)
            self.encoder_depth_ratio = random.choice([0.25,0.5])
            self.linear_heads = False
            self.rope = True
            
            self.lr0 = 3e-3
            self.clip_gradient_norm = 10**rand(-1,1)
            self.warmup_steps = 100*(10**rand(1.18,1.3))
            
    @staticmethod
    def upgrade(args):
        args = {k:v for k,v in args.items()}
        def old_default(name, value):
            if name not in args: args[name] = value
        old_default('rope', False)
        old_default('linear_heads', True)
        return args
            
class SADelARTransformer(nn.Module):
    def __init__(self, depth=3, ctx_n=2250, stoks_len=750, stoks_codes=4097, stoks_width=None, spk_width=None, n_head=3, head_width=64, ffn_mult=4,
                 quantizers=8, speaker_map={"1":0}, tunables=Tunables()):
        super().__init__()
        self.quantizers = quantizers
        width = n_head * head_width
        store_attr("depth,ctx_n,stoks_len,stoks_codes,stoks_width,spk_width,n_head,head_width,ffn_mult,quantizers,speaker_map")
        self.width = width
        self.base_width = 3 * head_width
        self.tunables = tunables
        
        if stoks_width is None: stoks_width = width
        if spk_width is None: spk_width = width
        self.emb_factor = width != stoks_width
        self.spk_factor = width != spk_width

        if tunables.rope:
            self.positional_embeddings = None
        else:
            self.register_buffer('positional_embeddings', sinusoids(ctx_n, width))
        
        self.speaker_embedding = nn.Embedding(len(speaker_map), width)
        self.semantic_embedding = nn.Embedding(stoks_codes, stoks_width)
        if self.emb_factor:
            self.emb_to_hidden = nn.Linear(stoks_width, width)
        
        if self.spk_factor:
            self.spk_to_hidden = EmbeddingProjector(spk_width, width)

        qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width)
        
        encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
        decoder_depth = depth * 2 - encoder_depth
        self.encoder = nn.Sequential(*[
            ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(encoder_depth)
        ])
        self.ln_post = LayerNorm(width)
        
        self.decoder = DelSumDecoder(pos_embs=self.positional_embeddings, qk_scale=qk_scale,
                                     length=ctx_n, n_head=n_head, head_width=head_width, ffn_mult=ffn_mult,
                                     depth=decoder_depth, quantizers=quantizers,
                                     linear_heads=tunables.linear_heads, rope=tunables.rope)

        self.register_buffer('val_true', torch.zeros(self.quantizers).cuda())
        self.register_buffer('val_total', torch.zeros(self.quantizers).cuda())
        self.apply(self.init_transformer)

    def setup(self, device):
        pass
        
    def load_frozen_semantic_embeddings(self, vqmodel):
        with torch.no_grad():
            self.semantic_embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0]
            self.semantic_embedding.lr_scale = 0
        
    def init_transformer(self, m):
        if isinstance(m, LinearHead):
            m.no_weight_decay = True
            torch.nn.init.constant_(m.weight, 0)
        elif isinstance(m, QueryHead):
            m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
            torch.nn.init.constant_(m.weight, 0)
        elif isinstance(m, nn.Embedding):
            m.no_weight_decay = True
            m.lr_scale = self.tunables.embeddings_lr_scale
            std = self.tunables.embeddings_std
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
        elif isinstance(m, EmbeddingProjector):
            m.lr_scale = self.tunables.embeddings_lr_scale/2
            std = self.tunables.init_std
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
        elif isinstance(m, nn.Linear):
            m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
            std = self.tunables.init_std / m.weight.shape[1]
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
            if m.bias is not None:
                torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
        elif isinstance(m, nn.LayerNorm):
            m.no_weight_decay = True
            torch.nn.init.constant_(m.bias, 0)
            torch.nn.init.constant_(m.weight, 1)

    def embed_stoks(self, Stoks):
        b,n = Stoks.shape
        if self.stoks_len == 1500:
            # converts 50 toks/s to 75 toks/s by adding padding between every two tokens
            x = Stoks.reshape(b,n//2,2)
            x = x.repeat_interleave(2, -1)[:,:,:3]
            x[:,:,1] = 1024
            x = x.reshape(b,n//2*3)
        else:
            # it's a lot easier with 25 toks/s
            x = Stoks.repeat_interleave(3, -1)
        # embed semantic tokens
        Sembs = self.semantic_embedding(x.to(torch.long))
        if self.emb_factor:
            Sembs = self.emb_to_hidden(Sembs)
        return Sembs

    def forward(self, Stoks, Atoks, speakers, noloss=False):
        Atoks = Atoks.to(torch.long)
        semb = self.embed_stoks(Stoks)
        with record_function("encoder"):
            if self.positional_embeddings is not None: semb = semb + self.positional_embeddings
            xenc = self.ln_post(self.encoder(semb))
#             xenc = torch.zeros_like(xenc)
        with record_function("decoder"):
            Atoks_gt = Atoks.clone()
            Atoks_gt[Atoks == -100] = 1024
            # we can randomize speaker ids during validation to measure
            # the importance of the speaker embedding vs. just the acoustic prompt/prefix
#             if not self.training: speakers = speakers[torch.randperm(speakers.nelement())]
            spk_embs = self.speaker_embedding(speakers)
            if self.spk_factor: spk_embs = self.spk_to_hidden(spk_embs)
            logits = self.decoder(Atoks_gt, xenc + spk_embs.unsqueeze(1))
            logits *= self.tunables.output_mult / (self.width / self.base_width)
            
        if noloss:
            return logits

        with record_function("loss"):
            N = Atoks.shape[-1]
            loss = 0
            for i in range(self.quantizers):
                loss += F.cross_entropy(logits[:,i,i:].reshape(-1,logits.shape[-1]), Atoks[:,i,:N-i].reshape(-1))
            loss /= self.quantizers

        if not self.training:
            for i in range(self.quantizers):
                Atoks_i = Atoks[:,i,:N-i]
                valid_Atoks = Atoks_i != -100
                self.val_true[i] += (logits[:,i,i:].argmax(-1)[valid_Atoks] == Atoks_i[valid_Atoks]).float().sum()
                self.val_total[i] += valid_Atoks.float().sum()

        return logits, loss

    def get_metrics(self):
        metrics = {
            f'acc_{i}':x.item() for i,x in enumerate(self.val_true / self.val_total)
        }
        self.val_true[:] = 0
        self.val_total[:] = 0
        return metrics

    #
    # inference
    #
    @classmethod
    def load_model(cls, repo_id="collabora/whisperspeech", filename="s2a_up_wds.model", local_filename=None):
        if not local_filename:
            local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
        spec = torch.load(local_filename)
        if '_extra_state' not in spec['state_dict']: spec['state_dict']['_extra_state'] = { 'speaker_map': spec['config']['speaker_map'] }
        model = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec['tunables'])))
        model.load_state_dict(spec['state_dict'])
        model.eval()
        return model
    
    def get_extra_state(self):
        return { 'speaker_map': self.speaker_map }
    
    def set_extra_state(self, st):
        self.speaker_map = st['speaker_map']

    def load_checkpoint(self, local_filename):
        spec = torch.load(local_filename, map_location='cpu')
        assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
        state_dict = {k.replace('model.', ''):v
                      for k,v in spec['state_dict'].items()}
        self.load_state_dict(state_dict)
        return self
    
    def save_model(self, fname):
        torch.save(dict(config = self.__stored_args__,
                        tunables = dataclasses.asdict(self.tunables),
                        state_dict = self.state_dict()), fname)

    @property
    def device(self):
        return next(self.parameters()).device
    
    @torch.no_grad()
    def generate(self, stoks, speakers, N=None, T=0.7, top_k=None, show_progress_bar=True):
        dev = self.device
        if self.stoks_len == 1500:
            N = N or len(stoks) * 3 // 2
        else:
            N = N or len(stoks) * 3
        stoks = F.pad(stoks.to(dev), (0, self.stoks_len - len(stoks)), value=self.stoks_codes-1).unsqueeze(0)
        speakers = torch.tensor([self.speaker_map[spk] for spk in speakers], device=dev)
        toks = torch.zeros((1,self.quantizers,N), dtype=torch.long, device=dev)
        it = range(0,N)
        if show_progress_bar: it = progress_bar(it)
        for i in it:
            p = self(stoks, toks[:,:,:i], speakers, noloss=True)
            last_p = p[0,:,-1]
            if top_k:
                last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf
            for j,tok in enumerate(torch.multinomial((last_p / float(T)).softmax(-1), 1)):
                toks[0,j,max(0,i-j)] = tok
            if toks[0,0,i] == 1024: return toks[0,:,:i]
        return toks[0]

# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 37
def _make_model(size:str, quantizers:int=4, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None, **kwargs):
    assert(dataset is not None)
    kwargs = dict(speaker_map=dataset.speakers, quantizers=quantizers, tunables=tunables, **kwargs)
    if size == 'micro':
        return SADelARTransformer(depth=4, n_head=3, ffn_mult=2, **kwargs)
    if size == 'tiny-narrow':
        return SADelARTransformer(depth=4, n_head=6, ffn_mult=1, **kwargs)
    if size == 'tiny':
        return SADelARTransformer(depth=4, n_head=6, **kwargs)
    if size == 'base':
        return SADelARTransformer(depth=6, n_head=8, **kwargs)
    if size == 'base-deep':
        return SADelARTransformer(depth=9, n_head=8, **kwargs)
    if size == 'base-wide':
        return SADelARTransformer(depth=6, n_head=12, **kwargs)
    if size == 'small/2':
        return SADelARTransformer(depth=9, n_head=12, **kwargs)
    if size == 'small':
        return SADelARTransformer(depth=12, n_head=12, **kwargs)
    if size == 'medium':
        return SADelARTransformer(depth=24, n_head=16, **kwargs)

def make_model(size:str, quantizers:int=4, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
    if frozen_embeddings_model:
        vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model)
        model = _make_model(size, quantizers, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
        model.load_frozen_semantic_embeddings(vqmodel)
    else:
        model = _make_model(size, quantizers, tunables, dataset)
    return model