Spaces:
Running
on
T4
Running
on
T4
File size: 11,112 Bytes
33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/B2. Training (Lightning).ipynb.
# %% auto 0
__all__ = []
# %% ../nbs/B2. Training (Lightning).ipynb 2
import io
import time
import random
from pathlib import Path
from fastprogress import progress_bar, master_bar
import fastprogress
import wandb
import numpy as np
import pylab as plt
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from torch.profiler import record_function
# %% ../nbs/B2. Training (Lightning).ipynb 3
import lightning.pytorch as pl
import math
class TrainingTask(pl.LightningModule):
def __init__(self, model, model_hparams=None):
super().__init__()
self.model = model
self.model_hparams = model_hparams
def on_fit_start(self):
if getattr(self.model, 'setup'):
self.model.setup(self.device)
def configure_optimizers(self):
""" Initialize AdamW optimizer"""
lr = self.model_hparams['lr0']
weight_decay = self.model_hparams['weight_decay']
all_params = set(model.parameters())
customized_params = set()
groups = []
group_map = {}
for name,m in model.named_modules():
if hasattr(m, 'no_weight_decay') or hasattr(m, 'lr_scale'):
customized_params |= set(m.parameters())
m_wd = 0 if hasattr(m, 'no_weight_decay') else weight_decay
m_lr = lr * getattr(m, 'lr_scale', 1)
group = group_map.get((m_wd, m_lr), None)
if not group:
group = {"params": [], "names": [], "weight_decay": m_wd, "lr": m_lr}
groups.append(group)
group_map[(m_wd, m_lr)] = group
group['params'] += m.parameters()
group['names'].append(name)
other_params = all_params - customized_params
param_groups = groups + [
{"names": ["other"], "params": list(other_params), "weight_decay": weight_decay },
]
optimizer = torch.optim.AdamW(lr=lr, betas=(0.9, 0.95), params=param_groups)
# modified from https://github.com/Lightning-AI/lightning/issues/5449#issuecomment-1501597319
def num_steps_per_epoch() -> int:
"""Get number of steps"""
# Accessing _data_source is flaky and might break
dataset = self.trainer.fit_loop._data_source.dataloader()
dataset_size = len(dataset)
# math.ceil so always overestimate (underestimating throws exceptions)
num_steps = math.ceil(dataset_size / self.trainer.accumulate_grad_batches)
return num_steps
total_steps = self.model_hparams['epochs'] * num_steps_per_epoch()
self.model_hparams['pct_start'] = min(0.3, self.model_hparams['warmup_steps'] / total_steps)
print(f"{self.model_hparams['epochs']=} epochs x {num_steps_per_epoch()=} steps")
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
pct_start=self.model_hparams['pct_start'],
max_lr=[pg.get('lr', lr) for pg in param_groups],
steps_per_epoch=num_steps_per_epoch(),
epochs=int(self.model_hparams['epochs']),
final_div_factor=25
)
return [optimizer], [{'scheduler': lr_scheduler, 'interval': 'step'}]
def training_step(self, train_batch, batch_idx):
train_logits, train_loss = self.model.forward(*train_batch)
self.log("train_loss", train_loss, sync_dist=True)
return train_loss
def validation_step(self, val_batch, batch_idx):
val_logits, val_loss = self.model.forward(*val_batch)
self.log("val_loss", val_loss, sync_dist=True)
return val_loss
def on_validation_epoch_end(self):
if hasattr(self.model, 'get_metrics'):
self.log_dict({'metrics/'+k:v for k,v in self.model.get_metrics().items()}, sync_dist=True)
def test_step(self, val_batch, batch_idx):
test_logits, test_loss = self.model.forward(*val_batch)
self.log("test_loss", test_loss, sync_dist=True)
return test_loss
# %% ../nbs/B2. Training (Lightning).ipynb 4
from fastcore.script import anno_parser
import shlex
# watch out: we can only pass Python values as keyword arguments (not positional)
# everything else has to be a string
def parse_and_call(name, fun, args, kwargs={}, log_to_wandb=True):
p = anno_parser(fun)
args = p.parse_args(args).__dict__
args.pop('xtra'); args.pop('pdb')
args.update({k:v for k, v in kwargs.items()})
if log_to_wandb and type(wandb_logger.experiment.config) == wandb.sdk.wandb_config.Config:
wandb_logger.experiment.config[name] = {k:v for k,v in args.items() if k not in ['dataset', 'tunables']}
return fun(**args)
# %% ../nbs/B2. Training (Lightning).ipynb 8
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, help='Task to train')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--input-dir', type=str, default='', help='input data path') # fixed in the model for now
parser.add_argument("--checkpoint-dir", type=str, default="./checkpoints/", help="directory to save the checkpoints")
parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
parser.add_argument('--validate-every-n-steps', type=int, default=500, help='how training steps to run between validations')
parser.add_argument('--weight-decay', type=float, default=1e-2, help='optimizer weight decay')
parser.add_argument('--lr0', type=float, default=1e-4, help='optimizer initial learning rate')
parser.add_argument('--clip-gradient-norm', type=float, default=None, help='enable gradient norm clipping')
parser.add_argument('--accumulate-grad-batches', type=int, default=1, help='perform the optimizer step only after going through several batches of samples')
parser.add_argument('--precision', type=str, default="16-mixed", help="floating point precision")
parser.add_argument('--warmup-steps', type=int, default=10000, help='total number steps during which the learning rate rises (defaults to 10k updates)')
parser.add_argument('--tunables', type=str, default="", help='tunable hyperparameters')
parser.add_argument('--resume-from', type=Path, default=None, help='resume training from the given checkpoint')
parser.add_argument('--strategy', type=str, default='ddp', help='distributed training strategy')
parser.add_argument('--wandb-suffix', type=str, default=None, help='W&B project name suffix')
parser.add_argument('--wandb-task-name', type=str, default=None, help='Task name for the W&B project name')
args = parser.parse_args().__dict__
task_args: list = shlex.split(args.pop("task"))
task_name, task_args = task_args[0], task_args[1:]
input_args: list = shlex.split(args.pop("input_dir"))
checkpoint_dir: str = args.pop("checkpoint_dir")
num_workers: int = args.pop("workers")
batch_size: int = args.pop("batch_size")
epochs: int = args.pop("epochs")
tunables_args: list = shlex.split(args.pop("tunables"))
hyp_params = {}
hyp_params['batch_size'] = batch_size
hyp_params['warmup_steps'] = args['warmup_steps']
hyp_params['weight_decay'] = args['weight_decay']
hyp_params['clip_gradient_norm'] = args['clip_gradient_norm']
hyp_params['accumulate_grad_batches'] = args['accumulate_grad_batches']
hyp_params['precision'] = args['precision']
hyp_params['lr0'] = args['lr0']
hyp_params['epochs'] = epochs
hyp_params['strategy'] = args['strategy']
# %% ../nbs/B2. Training (Lightning).ipynb 9
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.callbacks import LearningRateMonitor
import datetime
import webdataset as wds
import importlib
torch.set_float32_matmul_precision('medium')
project = f"WhisperSpeech-{args['wandb_task_name'] or task_name}"
if args['wandb_suffix']:
project += "-"+args['wandb_suffix']
wandb_logger = WandbLogger(project=project)
ckpt_callback = pl.callbacks.ModelCheckpoint(
dirpath=f'{task_name}-{epochs}e',
filename=task_name+"-{epoch}-{step}-{val_loss:.2f}",
monitor="val_loss",
save_top_k=4,
train_time_interval=datetime.timedelta(minutes=5),
)
lr_monitor_callback = LearningRateMonitor(logging_interval='step')
from torch.utils.data import DataLoader
task = importlib.import_module("whisperspeech."+task_name)
train_ds, val_ds = parse_and_call('dataset', task.load_datasets, input_args)
tunables = None
if hasattr(task, "Tunables"):
import dataclasses
tunables = parse_and_call('tunables', task.Tunables, tunables_args, log_to_wandb=False)
if type(wandb_logger.experiment.config) == wandb.sdk.wandb_config.Config:
wandb_logger.experiment.config['tunables'] = dataclasses.asdict(tunables)
for name in ["lr0", "clip_gradient_norm", "weight_decay", "warmup_steps"]:
val = getattr(tunables, name, None)
if val is not None: hyp_params[name] = val
if isinstance(train_ds, torch.utils.data.IterableDataset):
dl_batch_size, dl_shuffle = None, False
pin_memory = False
else:
dl_batch_size, dl_shuffle = batch_size, True
pin_memory = True
val_loader = wds.WebLoader(val_ds,
batch_size=dl_batch_size,
num_workers=num_workers,
drop_last=False,
pin_memory=pin_memory).unbatched().shuffle(1024).batched(batch_size).with_length(val_ds.total_samples // batch_size)
train_loader = wds.WebLoader(train_ds,
batch_size=dl_batch_size,
num_workers=num_workers,
drop_last=False,
shuffle=dl_shuffle,
pin_memory=pin_memory).unbatched().shuffle(1024).batched(batch_size).with_length(train_ds.total_samples // batch_size)
model_kwargs = dict(dataset=train_ds)
if tunables is not None: model_kwargs['tunables'] = tunables
model = parse_and_call('model', task.make_model, task_args, model_kwargs)
task = TrainingTask(model, model_hparams=hyp_params)
trainer = pl.Trainer(strategy=hyp_params['strategy'],
max_epochs=hyp_params['epochs'],
accelerator="gpu",
profiler="simple",
precision=hyp_params['precision'],
gradient_clip_val=hyp_params['clip_gradient_norm'],
accumulate_grad_batches=hyp_params['accumulate_grad_batches'],
val_check_interval=args.pop("validate_every_n_steps"),
enable_checkpointing=True,
logger=wandb_logger,
callbacks=[ckpt_callback, lr_monitor_callback])
if type(wandb_logger.experiment.config) == wandb.sdk.wandb_config.Config:
wandb_logger.experiment.config.update(hyp_params)
kwargs = {}
if 'resume_from' in args:
kwargs['ckpt_path'] = args['resume_from']
trainer.fit(model=task, train_dataloaders=train_loader, val_dataloaders=val_loader, **kwargs)
|