Spaces:
Running
on
T4
Running
on
T4
File size: 22,262 Bytes
33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/5B. Multi-lang text to semantic token modeling.ipynb.
# %% auto 0
__all__ = ['load_dataset', 'rand', 'Tunables', 'T2SEmbedding', 'Encoder', 'TSARTransformer', 'make_model']
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 1
import dataclasses
import random
import math
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import record_function
from huggingface_hub import hf_hub_download
from fastcore.basics import store_attr
from fastprogress import progress_bar
from pathlib import Path
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 2
from whisperspeech.modules import *
from whisperspeech import languages
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 6
import re
class CharTokenizer:
"""Trivial tokenizer – just use UTF-8 bytes"""
eot = 0
def encode(self, txt):
return list(bytes(txt.strip(), 'utf-8'))
def decode(self, tokens):
return bytes(tokens).decode('utf-8')
def tokenizer(ikey, okey, length):
"""Tokenizes a transcript"""
tok = CharTokenizer()
def _tokenizer(samples):
for s in samples:
toks = torch.tensor(tok.encode(s[ikey]))
s[okey] = F.pad(toks, (0, length - toks.shape[-1]), value=tok.eot)
yield s
return _tokenizer
def ar_padder(ikey, okey, length, pad_token):
"""Pads the tokens for autoregresive training"""
import numpy as np
def _ar_padder(samples):
for s in samples:
toks = s[ikey]
if isinstance(toks, (list, np.ndarray)): toks = torch.tensor(toks)
toks = toks.to(torch.long)
s['in_' +okey] = F.pad(toks, (1, length - toks.shape[-1] - 1), value=pad_token)
s['out_'+okey] = F.pad(toks, (0, length - toks.shape[-1]), value=pad_token)
yield s
return _ar_padder
def char_per_seconder(txt_key, stoks_key, cps_key, stoks_per_second=25):
"""Adds the characters per second metric to the input data"""
def _char_per_seconder(samples):
for s in samples:
secs = s[stoks_key].shape[-1] / stoks_per_second
s[cps_key] = len(s[txt_key]) / secs
yield s
return _char_per_seconder
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 7
def load_dataset(
txt_shard_spec:str, # transcription webdataset shards
stoks_shard_dir:str, # stoks webdataset base dir
samples:int, # samples per epoch
txt_kind:str='small.en-txt',
vq_codes:int=4096,
language:str='en',
weight:float=1,
validation:bool=False,
exclude_files:str=None,
):
import webdataset as wds
from whisperspeech import utils
shards = utils.shard_glob(txt_shard_spec)
excludes = {x for file in exclude_files.split() for x in utils.readlines(file)} if exclude_files else set()
language = languages.to_id(language)
def set_language(x):
x['language'] = language
return x
same_on_all_nodes = lambda urls: urls # will only be used for validation
ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose(
wds.decode(),
utils.merge_in(utils.derived_dataset('eqvad-stoks', base=txt_kind, suffix='', dir=stoks_shard_dir)),
# discard validation samples, select samples > .5s
wds.select(lambda s: s['__key__'] not in excludes and s['stoks.npy'].shape[-1] > 12),
tokenizer('txt', 'ttoks', length=550),
ar_padder('stoks.npy', 'stoks', length=750, pad_token=vq_codes-1),
ar_padder('ttoks', 'ttoks', length=550, pad_token=CharTokenizer.eot),
char_per_seconder('txt', 'stoks.npy', 'cps', stoks_per_second=25),
wds.map(set_language),
wds.to_tuple('in_ttoks', 'out_ttoks', 'language', 'cps', 'in_stoks', 'out_stoks'),
wds.shuffle(20000, initial=20000),
wds.batched(64)
)
if validation:
ds = ds.slice(samples // 64)
ds.total_samples = samples
ds.stoks_len = 750
ds.stoks_codes = vq_codes
ds.ttoks_len = 550
ds.weight = weight
return ds
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 14
def rand(start, end):
return random.random() * (end - start) + start
@dataclasses.dataclass
class Tunables:
init_std :float = 1
embeddings_std :float = .01
embeddings_lr_scale: float = 5
embedding_projector_lr_scale: float = 2.5
output_mult :float = .35
query_mult :float = 1
encoder_depth_ratio :float = 0.25
eot_dropout_p :float = .5
cps_input: bool = True
cps_bins: int = 32
lr0 :float = 1.5e-3
clip_gradient_norm :float = .2
weight_decay :float = 1e-1
warmup_steps :float = 4000
random :bool = False
def __post_init__(self):
# randomize the hyperparams if requested
if self.random:
self.init_std = 10**rand(-1,1)
self.embeddings_std = 10**rand(-3,-.7)
self.embeddings_lr_scale = rand(2,6)
self.output_mult = rand(0.25,0.65)
self.query_mult = 2**rand(-2,3)
self.encoder_depth_ratio = 0.25
self.lr0 = rand(1,5)*1e-3
self.clip_gradient_norm = 10**rand(-3,0)
self.warmup_steps = 100*(10**rand(1,1.85))
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 15
class T2SEmbedding(nn.Module):
def __init__(self, length=1500, codes=1024, width=384, pos_embs=None, stoks_width=384):
super().__init__()
self.embedding = FlexEmbeddings(codes, width, special_codes=1, frozen_width=stoks_width)
if pos_embs is None: pos_embs = sinusoids(length, width)
self.register_buffer("positional_embedding", pos_embs)
def forward(self, Stoks, xenc, cps=None, offset=0):
Sembs = self.embedding(Stoks)
xin = (Sembs + self.positional_embedding[offset : offset + Sembs.shape[1]]).to(xenc.dtype)
if cps is not None: xin = xin + cps
return xin, offset
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 16
class Encoder(nn.Module):
def __init__(self, depth=6, width=384, n_head=6, length=1500, codes=1024, emb_width=384, ffn_mult=4, pos_embs=None, tunables=Tunables()):
super().__init__()
self.emb_width = emb_width
self.embedding = FlexEmbeddings(codes, width, frozen_width=emb_width)
if pos_embs is None: pos_embs = sinusoids(length, width)
self.register_buffer("positional_embedding", pos_embs)
self.layers = nn.ModuleList([
ResidualAttentionBlock(width, n_head,
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth)
])
self.ln_post = LayerNorm(width)
mask = torch.empty(length, length).fill_(-torch.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, Stoks, positions, lang_emb=None):
xin = self.embedding(Stoks)
if lang_emb is not None: xin += lang_emb
# assert xin.shape[1:] == self.positional_embedding.shape, "incorrect semantic token shape"
x = (xin +
self.positional_embedding[positions]).to(xin.dtype)
for l in self.layers: x = l(x, positions, causal=False, mask=self.mask)
return self.ln_post(x)
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 17
class TSARTransformer(nn.Module):
def __init__(self, depth=6, n_head=6, head_width=64, ffn_mult=4,
ttoks_len=200, ttoks_codes=256, ttoks_width=None,
stoks_len=1500, stoks_codes=1024, stoks_width=None,
tunables=Tunables()):
super().__init__()
store_attr("depth,n_head,head_width,ffn_mult,stoks_width,ttoks_width,ttoks_len,stoks_len,ttoks_codes,stoks_codes")
width = n_head * head_width
self.width = width
self.base_width = 3 * head_width
self.tunables = tunables
if self.stoks_width is None: self.stoks_width = self.width
if self.ttoks_width is None: self.ttoks_width = self.width
self.lang_embeddings = nn.Embedding(len(languages.languages), width)
if tunables.cps_input:
self.cps_embeddings = nn.Embedding(tunables.cps_bins, self.width)
else:
self.cps_embeddings = None
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
decoder_depth = depth * 2 - encoder_depth
tformer_args = dict(width=width, n_head=n_head, ffn_mult=ffn_mult, tunables=tunables)
self.encoder = Encoder(length=ttoks_len, codes=ttoks_codes, emb_width=self.ttoks_width, depth=encoder_depth, **tformer_args)
self.embeddings = T2SEmbedding(length=stoks_len, codes=stoks_codes, width=width, stoks_width=self.stoks_width)
self.decoder = BaseDecoder(
length=stoks_len,
depth=decoder_depth,
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head),
width=width, n_head=n_head, ffn_mult=ffn_mult,
)
self.tokenizer = None
self.apply(self.init_transformer)
def load_frozen_semantic_embeddings(self, vqmodel):
self.embeddings.embedding.set_frozen_embeddings(vqmodel.rq.layers[0]._codebook.embed[0])
def setup(self, device):
pass
def init_transformer(self, m):
if isinstance(m, LinearHead):
m.no_weight_decay = True
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, QueryHead):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, nn.Embedding):
m.no_weight_decay = True
m.lr_scale = self.tunables.embeddings_lr_scale
std = self.tunables.embeddings_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, EmbeddingProjector):
m.lr_scale = self.tunables.embedding_projector_lr_scale
std = self.tunables.init_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.Linear):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
std = self.tunables.init_std / m.weight.shape[1]
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
if m.bias is not None:
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.LayerNorm):
m.no_weight_decay = True
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1)
def _embed_cps(self, cpss):
if self.cps_embeddings is None: return None
cps_bin = (cpss / 20 * self.tunables.cps_bins).to(torch.long)
cps_bin[cps_bin >= self.tunables.cps_bins] = self.tunables.cps_bins-1
return self.cps_embeddings(cps_bin).unsqueeze(1)
def run_encoder(self, in_ttoks, languages, cpss):
if len(languages.shape) != 3: lang_embs = self.lang_embeddings(languages)
else: lang_embs = languages
if len(lang_embs.shape) == 2: lang_embs = lang_embs.unsqueeze(1)
cps_emb = self._embed_cps(cpss)
with record_function("encoder"):
positions = torch.arange(0, in_ttoks.shape[1], device=in_ttoks.device)
xenc = self.encoder(in_ttoks.to(torch.long), positions, lang_emb=lang_embs)
return xenc, positions, cps_emb
def forward(self, in_ttoks, out_ttoks, languages, cpss, in_stoks, in_stoks_positions, out_stoks=None, loss=True, offset=None, xenc=None, xenc_positions=None, cps_emb=None):
if xenc is None:
xenc, cps_emb = self.run_encoder(in_ttoks, languages, cpss)
with record_function("decoder"):
x = (self.embeddings.embedding(in_stoks) +
self.embeddings.positional_embedding[in_stoks_positions] +
cps_emb).to(xenc[0].dtype)
x = self.decoder(x, in_stoks_positions, xenc, xenc_positions)
logits = self.embeddings.embedding.unembed(x)
logits = logits * self.tunables.output_mult / (self.width / self.base_width)
if loss is not None:
enc_logits = self.encoder.embedding.unembed(xenc[0])
enc_logits = enc_logits * self.tunables.output_mult / (self.width / self.base_width)
with record_function("loss"):
loss = F.cross_entropy(logits.transpose(-1,-2), out_stoks)
if self.training:
loss += 0.1 * F.cross_entropy(enc_logits.transpose(-1,-2), out_ttoks)
return logits, loss
#
# inference
#
@classmethod
def load_model(cls, ref="collabora/whisperspeech:t2s-small-en+pl.model",
repo_id=None, filename=None, local_filename=None):
if repo_id is None and filename is None and local_filename is None:
if ":" in ref:
repo_id, filename = ref.split(":", 1)
else:
local_filename = ref
if not local_filename:
local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
spec = torch.load(local_filename)
model = cls(**spec['config'], tunables=Tunables(**spec['tunables']))
model.load_state_dict(spec['state_dict'])
model.eval()
return model
def load_checkpoint(self, local_filename):
spec = torch.load(local_filename, map_location='cpu')
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
state_dict = {k.replace('model.', ''):v
for k,v in spec['state_dict'].items()}
self.load_state_dict(state_dict)
return self
def save_model(self, fname):
torch.save(dict(config = self.__stored_args__,
tunables = dataclasses.asdict(self.tunables),
state_dict = self.state_dict()), fname)
def ensure_tokenizer(self):
assert not self.training
if self.tokenizer is None: self.tokenizer = CharTokenizer()
def switch_dtypes(self, dtype=torch.float16):
self.dtype = dtype
for n,m in self.named_modules():
# convert every leaf layer apart from the LayerNorms
if isinstance(m, (nn.Linear, nn.Embedding)):
m.to(dtype)
# take care of buffers ([kv]_cache, masks) that are not in the leaf layers
for bn,b in m.named_buffers(recurse=False):
setattr(m,bn,b.to(dtype))
def optimize(self, max_batch_size=1, dtype=torch.float16, torch_compile=True):
for emb in [self.embeddings.embedding, self.embeddings.embedding]:
emb.convert_for_eval()
for l in self.encoder.layers:
l.attn.convert_for_eval()
for l in self.decoder.layers:
l.attn.convert_for_eval()
l.cross_attn.convert_for_eval()
l.setup_kv_cache(max_batch_size, self.stoks_len, self.ttoks_len)
self.switch_dtypes(dtype)
if torch_compile:
self.generate_next = torch.compile(self.generate_next, mode="reduce-overhead", fullgraph=True)
@property
def device(self):
return next(self.parameters()).device
# from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
def multinomial_sample_one_no_sync(self, probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(self, logits, T=1.0, top_k=None):
logits = logits / max(T, 1e-5)
logits[self.embeddings.embedding.codes:] = -torch.inf
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(self, logits, T=1.0, top_k=None):
probs = self.logits_to_probs(logits[0,-1], T, top_k)
idx_next = self.multinomial_sample_one_no_sync(probs)
return idx_next
def generate_one(self, toks, toks_positions, cps_emb, xenc, xenc_positions, T, top_k):
probs, _ = self(None, None, None, None, toks, toks_positions, loss=None, xenc=xenc, xenc_positions=xenc_positions, cps_emb=cps_emb)
return self.sample(probs, T, top_k)
def generate_next(self, *args, **kwargs):
return self.generate_one(*args, **kwargs)
@torch.no_grad()
def prep(self, txt, cps=15, lang="en"):
dev = self.device
ttoks = torch.tensor(self.tokenizer.encode(txt), device=dev)
ttoks = F.pad(ttoks, (0, self.ttoks_len - len(ttoks)), value=self.tokenizer.eot).unsqueeze(0)
cpss = torch.tensor([cps], device=dev)
langs = torch.tensor([languages.to_id(lang)], device=dev)
return ttoks, cpss, langs
@torch.no_grad()
def generate(self, txt, cps=15, lang="en", N=None, T=0.7, top_k=None, step=None, show_progress_bar=True):
self.ensure_tokenizer()
N = N or self.stoks_len
dev = self.device
ttoks = []
langs = []
if isinstance(lang, list):
lang0 = lang[0]
assert isinstance(txt, list), "lang and txt have to be both lists or strings"
for txt, lang in zip(txt, lang):
tt = self.tokenizer.encode(txt)
ttoks += tt
langs += [languages.to_id(lang)] * len(tt)
elif isinstance(lang, torch.Tensor):
langs = lang
ttoks = self.tokenizer.encode(txt)
else:
lang0 = lang
ttoks = self.tokenizer.encode(txt)
langs = torch.tensor([languages.to_id(lang)], device=dev).unsqueeze(0)
ttoks = torch.tensor(ttoks, device=dev)
ttoks = F.pad(ttoks, (1, self.ttoks_len - len(ttoks) - 1), value=self.tokenizer.eot).unsqueeze(0)
cpss = torch.tensor([cps], device=dev)
if not isinstance(langs, torch.Tensor):
langs = torch.tensor(langs, device=dev)
langs = F.pad(langs, (1, self.ttoks_len - len(langs) - 1), value=languages.to_id(lang0)).unsqueeze(0)
it = range(0,N-1)
if show_progress_bar: it = progress_bar(it)
toks = torch.zeros((1,N), dtype=torch.long, device=dev)
toks[:,0] = self.stoks_codes-1
toks_positions = torch.arange(N, device=dev)
with record_function("encode"):
xenc, xenc_positions, cps_emb = self.run_encoder(ttoks, langs, cpss)
toks_positions = torch.arange(N+1, device=dev)
# contrary to S2A this model works without prefill and is actually a tiny bit faster
# with record_function("prefill"):
# toks[0,1] = self.generate_one(toks[:,:1], toks_positions[:1], cps_emb, xenc, xenc_positions, T, top_k)
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
for i in it:
toks[0,i+1] = self.generate_next(toks[:,i:i+1], toks_positions[i:i+1], cps_emb, xenc, xenc_positions, T, top_k)
if i % 25 == 0 and toks[0,i+1] == self.stoks_codes-1: return toks[0,:i+1]
# for profiling, debugging or early exit
if step is not None: step()
return toks[0,:]
@torch.no_grad()
def generate_batch(self, txts, N=None, T=1.1, top_k=7, show_progress_bar=True):
self.ensure_tokenizer()
N = self.stoks_len
dev = self.device
ttoks = []
for txt in txts:
ttoks_ = torch.tensor(self.tokenizer.encode(txt), device=dev)
ttoks_ = F.pad(ttoks_, (0, self.ttoks_len - len(ttoks_)), value=self.tokenizer.eot).unsqueeze(0)
ttoks.append(ttoks_)
ttoks = torch.cat(ttoks, dim=0)
toks = torch.zeros((len(ttoks),N), dtype=torch.long, device=dev)
it = range(N)
if show_progress_bar: it = progress_bar(it)
for i in it:
p, _ = self(ttoks, toks[:,:i], loss=None)
last_p = p[:,-1]
if top_k:
last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf
tok = torch.multinomial((last_p / float(T)).softmax(-1), 1)
toks[:,i] = tok[:,0]
if (toks[:,i] == self.stoks_codes-1).all(): return toks[:,:i]
return toks
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 18
def _make_model(size:str, tunables:Tunables=Tunables(), dataset=None, **kwargs):
kwargs = dict(stoks_len = dataset.stoks_len, ttoks_len = dataset.ttoks_len, tunables=tunables, **kwargs)
if 'stoks_codes' not in kwargs: kwargs['stoks_codes'] = dataset.stoks_codes
if size == 'micro':
return TSARTransformer(depth=2, n_head=3, ffn_mult=1, **kwargs)
if size == 'tiny':
return TSARTransformer(depth=4, n_head=6, **kwargs)
if size == 'base':
return TSARTransformer(depth=6, n_head=8, **kwargs)
if size == 'small':
return TSARTransformer(depth=12, n_head=12, **kwargs)
if size == 'small+':
return TSARTransformer(depth=12, n_head=16, **kwargs)
if size == 'medium':
return TSARTransformer(depth=24, n_head=16, **kwargs)
def make_model(size:str, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
from whisperspeech import vq_stoks
if frozen_embeddings_model:
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model)
model = _make_model(size, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
model.load_frozen_semantic_embeddings(vqmodel)
else:
model = _make_model(size, tunables, dataset, mode=mode)
return model
|