Spaces:
Running
on
T4
Running
on
T4
File size: 5,740 Bytes
33d9042 4c1c145 33d9042 9488c79 33d9042 da61538 33d9042 85d5a02 33d9042 0416a60 a71b09f 5123302 33d9042 8b6e3fd 33d9042 8b6e3fd 9c5433a e27c13f 9c5433a aa13f09 9c5433a aa13f09 9c5433a 33d9042 8b6e3fd 65a292c 8b6e3fd 65a292c abd3a21 65a292c 8b6e3fd 65a292c abd3a21 65a292c 8b6e3fd abd3a21 65a292c abd3a21 65a292c 8b6e3fd abd3a21 8b6e3fd 33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import spaces
import tempfile
import gradio as gr
import os
from whisperspeech.pipeline import Pipeline
import torch
import soundfile as sf
import numpy as np
import torch.nn.functional as F
from whisperspeech.languages import LANGUAGES
from whisperspeech.pipeline import Pipeline
from whisperspeech.utils import resampler
title = """# 🙋🏻♂️ Welcome to🌟Tonic's🌬️💬📝WhisperSpeech
You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Previously known as spear-tts-pytorch. It's like Stable Diffusion but for speech – both powerful and easily customizable.
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
@spaces.GPU
def whisper_speech_demo(text, lang, speaker_audio, mix_lang, mix_text):
pipe = Pipeline()
speaker_url = None
if speaker_audio is not None:
speaker_url = speaker_audio
if mix_lang and mix_text:
mixed_langs = lang.split(',') + mix_lang.split(',')
mixed_texts = [text] + mix_text.split(',')
stoks = pipe.t2s.generate(mixed_texts, lang=mixed_langs)
audio_data = pipe.generate(stoks, speaker_url, lang=mixed_langs[0])
else:
audio_data = pipe.generate(text, speaker_url, lang)
resample_audio = resampler(newsr=24000)
audio_data_resampled = next(resample_audio([{'sample_rate': 22050, 'samples': audio_data.cpu()}]))['samples_24k']
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
tmp_file_name = tmp_file.name
audio_np = audio_data_resampled.numpy() # Convert to numpy array
if audio_np.max() > 1.0 or audio_np.min() < -1.0:
audio_np = audio_np / np.max(np.abs(audio_np))
if audio_np.ndim > 1:
audio_np = audio_np[:,0]
audio_np = np.int16(audio_np * 32767)
with wave.open(tmp_file_name, 'w') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(24000)
wav_file.writeframes(audio_np.tobytes())
return tmp_file_name
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Tabs():
with gr.TabItem("🌬️💬📝Standard TTS"):
with gr.Row():
text_input_standard = gr.Textbox(label="Enter text")
lang_input_standard = gr.Dropdown(choices=list(LANGUAGES.keys()), label="Language")
speaker_input_standard = gr.Audio(label="Upload or Record Speaker Audio (optional)", sources=["upload", "microphone"], type="filepath")
placeholder_mix_lang = gr.Textbox(visible=False) # Placeholder, hidden
placeholder_mix_text = gr.Textbox(visible=False) # Placeholder, hidden
generate_button_standard = gr.Button("Generate Speech")
output_audio_standard = gr.Audio(label="🌬️💬📝WhisperSpeech")
generate_button_standard.click(
whisper_speech_demo,
inputs=[text_input_standard, lang_input_standard, speaker_input_standard, placeholder_mix_lang, placeholder_mix_text],
outputs=output_audio_standard
)
with gr.TabItem("🌬️💬📝Mixed Language TTS"):
with gr.Row():
placeholder_text_input = gr.Textbox(visible=False) # Placeholder, hidden
placeholder_lang_input = gr.Dropdown(choices=[], visible=False) # Placeholder, hidden
placeholder_speaker_input = gr.Audio(visible=False)
mix_lang_input_mixed = gr.CheckboxGroup(choices=list(LANGUAGES.keys()), label="Select Languages")
mix_text_input_mixed = gr.Textbox(label="Enter mixed language text", placeholder="e.g., Hello, Cześć")
generate_button_mixed = gr.Button("Generate Mixed Speech")
output_audio_mixed = gr.Audio(label="Mixed🌬️💬📝WhisperSpeech")
generate_button_mixed.click(
whisper_speech_demo,
inputs=[placeholder_text_input, placeholder_lang_input, placeholder_speaker_input, mix_lang_input_mixed, mix_text_input_mixed],
outputs=output_audio_mixed
)
demo.launch() |