Spaces:
Running
on
T4
Running
on
T4
File size: 28,185 Bytes
33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/4B. Semantic to acoustic token modeling.ipynb.
# %% auto 0
__all__ = ['load_datasets', 'CMLMVisual', 'Rotary', 'rotate_half', 'apply_rotary_pos_emb', 'ResidualAttentionBlock',
'MultiHeadAttention', 'DelSumDecoder', 'EmbeddingProjector', 'rand', 'Tunables', 'SADelARTransformer']
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 1
import io
import time
import math
import random
import dataclasses
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import profile, record_function, ProfilerActivity, schedule
from fastcore.basics import store_attr
from huggingface_hub import hf_hub_download
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 3
from pathlib import Path
import json
from fastprogress import progress_bar, master_bar
import webdataset as wds
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 4
from .train import *
from .modules import *
from . import vq_stoks
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 8
def rand(start, end):
return random.random() * (end - start) + start
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 9
def random_trunc(random_trunc_p, atoks_len = 2250, stoks_len = 750):
atoks_per_second = atoks_len / 30
def _trunc(samples):
for s in samples:
if random.random() < random_trunc_p:
seconds = rand(0.3, 30)
s['atoks.npy'] = s['atoks.npy'][:,:math.ceil(seconds * atoks_per_second)]
s['stoks.npy'] = s['stoks.npy'][:math.ceil(s['atoks.npy'].shape[-1]/atoks_len*stoks_len)]
yield s
return _trunc
def pad_samples(atoks_len = 2250, stoks_len = 750, stoks_pad_token = 4096):
def _pad(samples):
for s in samples:
s['stoks.npy'] = F.pad(torch.tensor(s['stoks.npy']), (0, stoks_len - s['stoks.npy'].shape[-1]), value=stoks_pad_token)
s['atoks.npy'] = F.pad(torch.tensor(s['atoks.npy']), (0, atoks_len - s['atoks.npy'].shape[-1]), value=-100)
yield s
return _pad
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 10
def speaker_id_extractor(speaker_map):
def _extractor(samples):
for s in samples:
s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]])
yield s
return _extractor
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 14
def load_datasets(
input:str, # webdataset folder
samples:int, # samples per epoch
subsample:float=1, # use a fraction of the files
val_samples:int=512,
random_trunc_p:float=0,# probability of truncating the input to less than 30 seconds
stoks_pad_token=4096,
):
if isinstance(input, (Path, str)):
path = Path(input)
if path.is_dir():
glob = '*-s2a-*.tar.gz'
else:
glob = path.name
path = path.parent
input = Path(path).glob(glob)
elif isinstance(input, list):
pass
else:
raise ArgumentError("input should be either a list or a path with an optional glob specifier")
shards = [str(x) for x in input]
speakers = set()
for shard in shards:
with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines()))
speakers = {id:i for i,id in enumerate(sorted(speakers))}
def ds(shards, length):
ds = wds.WebDataset(wds.ResampledShards(shards)).compose(
wds.decode(),
speaker_id_extractor(speakers),
random_trunc(random_trunc_p) if random_trunc_p > 0 else lambda x: x,
pad_samples(stoks_pad_token=stoks_pad_token),
wds.to_tuple('stoks.npy', 'atoks.npy', 'speaker'),
wds.batched(64),
)
ds.speakers = speakers
ds.total_samples = length
return ds.compose(wds.slice(length // 64)).with_epoch(length // 64).with_length(length // 64)
return (
ds(shards[1:], samples),
ds(shards[:1], val_samples),
)
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 33
import pylab as plt
import fastprogress
import IPython
import numpy as np
class CMLMVisual:
"""Visualize training progress"""
def __init__ (self, model, masterbar, total_steps):
self.model = model
self.masterbar = masterbar
self.total_steps = total_steps
self.epochs = total_steps // masterbar.main_bar.total
gs = plt.GridSpec(3, 1, height_ratios=[2,2,1])
graph_fig = plt.figure(figsize=(10,6))
self.graph_fig = graph_fig
self.loss_p = graph_fig.add_subplot(gs[0])
self.acc_p = graph_fig.add_subplot(gs[1], sharex=self.loss_p)
self.acc_p.tick_params('x', labelbottom=False)
self.lr_p = graph_fig.add_subplot(gs[2], sharex=self.loss_p)
self.lr_p.tick_params('x', labelbottom=False)
self.graph_out = None
self.its = []
self.train_losses = []
self.val_losses = []
self.lr_history = []
self.acc = np.nan
self.acc_history = []
self.pacc_history = []
def show(self):
self.start_t = time.time()
self.masterbar.write(["samples", "train", "val", "time"], table=True)
self.graph_out = display(self.graph_fig, display_id=True)
self.acc_out = display(IPython.display.HTML(''), display_id=True)
def hide(self):
if self.graph_out is not None:
self.graph_out.update(IPython.display.HTML(''))
def plot(self):
loss_p, acc_p, lr_p = self.loss_p, self.acc_p, self.lr_p
loss_p.clear()
loss_p.plot(self.its, self.train_losses)
loss_p.plot(self.its, self.val_losses)
loss_p.set_xlim(0, self.total_steps)
loss_p.set_yscale('log')
acc_p.clear()
for k in self.acc_history[-1].keys():
acc_p.plot(self.its, [x[k] for x in self.acc_history], ':')
# acc_p.plot(self.its, np.stack(self.pacc_history), label=range(len(self.pacc_history[0])))
lr_p.clear()
lrs = np.array(self.lr_history)
lr_p.plot(self.its, lrs)
self.graph_out.update(self.graph_fig)
def add_data(self, it, lr, train_loss, val_los):
self.its.append(it)
self.train_losses.append(train_loss)
self.val_losses.append(val_los)
self.lr_history.append(lr)
metrics = self.model.get_metrics()
self.acc_history.append(metrics)
# self.acc_out.update(f"Accuracy: {self.entropy_history[-1]:.2f}")
# self.pacc_history.append((self.model.pval_true / self.model.pval_total).cpu().numpy())
# if self.acc_history:
html = "<h5>Accuracies:</h5><table>"
html += "<thead>"+(''.join([f"<td>{k}<td>" for k,x in metrics.items()]))+"</thead>"
html += "<tr>"+(''.join([f"<td>{x*100:.1f}%<td>" for k,x in metrics.items()]))+"</tr>"
html += "</table>"
self.acc_out.update(IPython.display.HTML(html))
self.plot()
def add_table_row(self, it, avg_train_loss, val_loss):
elapsed_t = time.time() - self.start_t
self.masterbar.write([it, f"{avg_train_loss:.5f}", f"{val_loss:.5f}", fastprogress.core.format_time(elapsed_t)], table=True)
def on_iter(self, bar, it, avg_train_loss, val_loss):
epoch = math.ceil(it / self.total_steps * self.epochs)
bar.comment = f"#{epoch}/{self.epochs} loss: {avg_train_loss:.3f} / {val_loss:.3f}"
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 34
# modified from https://blog.eleuther.ai/rotary-embeddings/
import torch
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_dim=1):
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, :, None, :]
self.sin_cached = emb.sin()[None, :, None, :]
return self.cos_cached, self.sin_cached
# rotary pos emb helpers:
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat(
(-x2, x1), dim=-1
)
#@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin):
return (q * cos[:,:q.shape[1]]) + (rotate_half(q) * sin[:,:q.shape[1]]), (k * cos) + (rotate_half(k) * sin)
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 35
from torch import Tensor, nn
import torch.nn.functional as F
from typing import Dict, Iterable, Optional
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False, rope: bool = False,
qk_scale: float = 1, ffn_mult: int = 4):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head, qk_scale=qk_scale, rope=rope)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = (
MultiHeadAttention(n_state, n_head, qk_scale=qk_scale, rope=rope) if cross_attention else None
)
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * ffn_mult
self.mlp = nn.Sequential(
nn.Linear(n_state, n_mlp), nn.GELU(), nn.Linear(n_mlp, n_state)
)
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
causal = False,
kv_cache: Optional[dict] = None,
):
x = x + self.attn(self.attn_ln(x), causal=causal, kv_cache=kv_cache)[0]
if self.cross_attn:
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
x = x + self.mlp(self.mlp_ln(x))
return x
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int, qk_scale: float = 1, rope: bool = False):
super().__init__()
self.n_head = n_head
self.sqrt_qk_scale = math.sqrt(qk_scale)
self.query = QueryHead(n_state, n_state)
self.key = nn.Linear(n_state, n_state, bias=False)
self.value = nn.Linear(n_state, n_state)
self.out = nn.Linear(n_state, n_state)
self.rotary = None
if rope:
self.rotary = Rotary(n_state // n_head)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
causal = False,
kv_cache: Optional[dict] = None,
):
q = self.query(x)
if kv_cache is None or xa is None or self.key not in kv_cache:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = self.key(x if xa is None else xa)
v = self.value(x if xa is None else xa)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache[self.key]
v = kv_cache[self.value]
if self.sqrt_qk_scale != 1:
q *= self.sqrt_qk_scale
k *= self.sqrt_qk_scale
wv, qk = self.qkv_attention_pth20(q, k, v, causal)
# wv, qk = self.qkv_attention_xformers(q, k, v, causal)
return self.out(wv), qk
def qkv_attention_pth20(
self, q: Tensor, k: Tensor, v: Tensor, causal = False
):
n_batch, n_ctx, n_state = q.shape
q = q.view(*q.shape[:2], self.n_head, -1)
k = k.view(*k.shape[:2], self.n_head, -1)
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
#print('before rot:', q.shape, k.shape)
if self.rotary:
q, k = apply_rotary_pos_emb(q, k, *self.rotary(k))
#print(' after rot:', q.shape, k.shape)
k = k.permute(0, 2, 1, 3)
q = q.permute(0, 2, 1, 3)
# modified for better performance under PyTorch 2.0
wv = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0, is_causal=causal)
# previously we've returned q@k which we don't have now
# since it's not actually used anywhere else, let's just keep two return values for compatibility
return wv.permute(0, 2, 1, 3).flatten(start_dim=2), None
def qkv_attention_xformers(
self, q: Tensor, k: Tensor, v: Tensor, causal = False
):
n_batch, n_ctx, n_state = q.shape
q = q.view(*q.shape[:2], self.n_head, -1)
k = k.view(*k.shape[:2], self.n_head, -1)
v = v.view(*v.shape[:2], self.n_head, -1)
if self.rotary:
q, k = apply_rotary_pos_emb(q, k, *self.rotary(k))
bias = xops.LowerTriangularMask() if causal else None
wv = xops.memory_efficient_attention(q,k,v, attn_bias=bias)
# previously we've returned q@k which we don't have now
# since it's not actually used anywhere else, let's just keep two return values for compatibility
return wv.flatten(start_dim=2), None
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 36
class DelSumDecoder(nn.Module):
def __init__(self, depth=6, n_head=6, head_width=64, qk_scale=1, ffn_mult=4, length=2250, codes=1024, quantizers=8, linear_heads=True, rope=False, pos_embs=None):
super().__init__()
self.length = length
width = n_head * head_width
self.width = width
self.codes = codes
self.quantizers = quantizers
self.linear_heads = linear_heads
self.embeddings = nn.ModuleList([nn.Embedding(codes+1, width) for _ in range(quantizers)])
if pos_embs is not None:
self.register_buffer("positional_embedding", pos_embs)
self.layers = nn.ModuleList([
ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, cross_attention=True, rope=rope) for _ in range(math.floor(depth))
])
self.ln_post = LayerNorm(width)
if self.linear_heads:
self.heads = LinearHead(width, (codes+1) * quantizers, bias=False)
else:
self.splitter = nn.Sequential(
nn.Linear(width, width * quantizers),
nn.GELU(),
)
self.heads = nn.ModuleList([
LinearHead(width, codes+1, bias=True) for _ in range(quantizers)
])
def forward(self, toks, xenc):
b,_,n = toks.shape
newn = min(n+1, self.length)
embs = torch.zeros((b,newn,self.width), dtype=xenc.dtype, device=xenc.device)
for i in range(self.quantizers):
embs[:,:i+1] += self.embeddings[i](torch.tensor([self.codes], device=xenc.device))
if i < n:
embs[:,i+1:] += self.embeddings[i](toks[:,i,:newn-i-1])
x = embs.to(xenc.dtype)
for l in self.layers:
x = l(x, xenc, causal=True)
x = self.ln_post(x)
if self.linear_heads:
logits = self.heads(x).view(b,newn,self.quantizers,self.codes+1).permute(0,2,1,3)
else:
split = self.splitter(x).view(b,newn,self.quantizers,self.width)
logits = torch.stack([self.heads[q](split[:,:,q]) for q in range(self.quantizers)], dim=1)
return logits
class EmbeddingProjector(nn.Linear):
pass
def rand(start, end):
return random.random() * (end - start) + start
@dataclasses.dataclass
class Tunables:
init_std :float = 9
embeddings_std :float = 0.2
embeddings_lr_scale: float = 10
output_mult :float = 5.6
# FIXME: try separate mults for self and cross attention
query_mult :float = .3
encoder_depth_ratio :float = 0.25
linear_heads :bool = False
rope :bool = True
lr0 :float = 3e-3
clip_gradient_norm :float = 2
weight_decay :float = 1e-3
warmup_steps :float = 2000
random :bool = False
def __post_init__(self):
# randomize the hyperparams if requested
if self.random:
self.init_std = 2*10**rand(0,1)
self.embeddings_std = 10**rand(-1.7,-0.22)
self.embeddings_lr_scale = 2**rand(2,4)
self.output_mult = 2**rand(1.5,3)
self.query_mult = 2**rand(-3,-1.3)
self.encoder_depth_ratio = random.choice([0.25,0.5])
self.linear_heads = False
self.rope = True
self.lr0 = 3e-3
self.clip_gradient_norm = 10**rand(-1,1)
self.warmup_steps = 100*(10**rand(1.18,1.3))
@staticmethod
def upgrade(args):
args = {k:v for k,v in args.items()}
def old_default(name, value):
if name not in args: args[name] = value
old_default('rope', False)
old_default('linear_heads', True)
return args
class SADelARTransformer(nn.Module):
def __init__(self, depth=3, ctx_n=2250, stoks_len=750, stoks_codes=4097, stoks_width=None, spk_width=None, n_head=3, head_width=64, ffn_mult=4,
quantizers=8, speaker_map={"1":0}, tunables=Tunables()):
super().__init__()
self.quantizers = quantizers
width = n_head * head_width
store_attr("depth,ctx_n,stoks_len,stoks_codes,stoks_width,spk_width,n_head,head_width,ffn_mult,quantizers,speaker_map")
self.width = width
self.base_width = 3 * head_width
self.tunables = tunables
if stoks_width is None: stoks_width = width
if spk_width is None: spk_width = width
self.emb_factor = width != stoks_width
self.spk_factor = width != spk_width
if tunables.rope:
self.positional_embeddings = None
else:
self.register_buffer('positional_embeddings', sinusoids(ctx_n, width))
self.speaker_embedding = nn.Embedding(len(speaker_map), width)
self.semantic_embedding = nn.Embedding(stoks_codes, stoks_width)
if self.emb_factor:
self.emb_to_hidden = nn.Linear(stoks_width, width)
if self.spk_factor:
self.spk_to_hidden = EmbeddingProjector(spk_width, width)
qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width)
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
decoder_depth = depth * 2 - encoder_depth
self.encoder = nn.Sequential(*[
ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(encoder_depth)
])
self.ln_post = LayerNorm(width)
self.decoder = DelSumDecoder(pos_embs=self.positional_embeddings, qk_scale=qk_scale,
length=ctx_n, n_head=n_head, head_width=head_width, ffn_mult=ffn_mult,
depth=decoder_depth, quantizers=quantizers,
linear_heads=tunables.linear_heads, rope=tunables.rope)
self.register_buffer('val_true', torch.zeros(self.quantizers).cuda())
self.register_buffer('val_total', torch.zeros(self.quantizers).cuda())
self.apply(self.init_transformer)
def setup(self, device):
pass
def load_frozen_semantic_embeddings(self, vqmodel):
with torch.no_grad():
self.semantic_embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0]
self.semantic_embedding.lr_scale = 0
def init_transformer(self, m):
if isinstance(m, LinearHead):
m.no_weight_decay = True
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, QueryHead):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, nn.Embedding):
m.no_weight_decay = True
m.lr_scale = self.tunables.embeddings_lr_scale
std = self.tunables.embeddings_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, EmbeddingProjector):
m.lr_scale = self.tunables.embeddings_lr_scale/2
std = self.tunables.init_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.Linear):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
std = self.tunables.init_std / m.weight.shape[1]
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
if m.bias is not None:
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.LayerNorm):
m.no_weight_decay = True
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1)
def embed_stoks(self, Stoks):
b,n = Stoks.shape
if self.stoks_len == 1500:
# converts 50 toks/s to 75 toks/s by adding padding between every two tokens
x = Stoks.reshape(b,n//2,2)
x = x.repeat_interleave(2, -1)[:,:,:3]
x[:,:,1] = 1024
x = x.reshape(b,n//2*3)
else:
# it's a lot easier with 25 toks/s
x = Stoks.repeat_interleave(3, -1)
# embed semantic tokens
Sembs = self.semantic_embedding(x.to(torch.long))
if self.emb_factor:
Sembs = self.emb_to_hidden(Sembs)
return Sembs
def forward(self, Stoks, Atoks, speakers, noloss=False):
Atoks = Atoks.to(torch.long)
semb = self.embed_stoks(Stoks)
with record_function("encoder"):
if self.positional_embeddings is not None: semb = semb + self.positional_embeddings
xenc = self.ln_post(self.encoder(semb))
# xenc = torch.zeros_like(xenc)
with record_function("decoder"):
Atoks_gt = Atoks.clone()
Atoks_gt[Atoks == -100] = 1024
# we can randomize speaker ids during validation to measure
# the importance of the speaker embedding vs. just the acoustic prompt/prefix
# if not self.training: speakers = speakers[torch.randperm(speakers.nelement())]
spk_embs = self.speaker_embedding(speakers)
if self.spk_factor: spk_embs = self.spk_to_hidden(spk_embs)
logits = self.decoder(Atoks_gt, xenc + spk_embs.unsqueeze(1))
logits *= self.tunables.output_mult / (self.width / self.base_width)
if noloss:
return logits
with record_function("loss"):
N = Atoks.shape[-1]
loss = 0
for i in range(self.quantizers):
loss += F.cross_entropy(logits[:,i,i:].reshape(-1,logits.shape[-1]), Atoks[:,i,:N-i].reshape(-1))
loss /= self.quantizers
if not self.training:
for i in range(self.quantizers):
Atoks_i = Atoks[:,i,:N-i]
valid_Atoks = Atoks_i != -100
self.val_true[i] += (logits[:,i,i:].argmax(-1)[valid_Atoks] == Atoks_i[valid_Atoks]).float().sum()
self.val_total[i] += valid_Atoks.float().sum()
return logits, loss
def get_metrics(self):
metrics = {
f'acc_{i}':x.item() for i,x in enumerate(self.val_true / self.val_total)
}
self.val_true[:] = 0
self.val_total[:] = 0
return metrics
#
# inference
#
@classmethod
def load_model(cls, repo_id="collabora/whisperspeech", filename="s2a_up_wds.model", local_filename=None):
if not local_filename:
local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
spec = torch.load(local_filename)
if '_extra_state' not in spec['state_dict']: spec['state_dict']['_extra_state'] = { 'speaker_map': spec['config']['speaker_map'] }
model = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec['tunables'])))
model.load_state_dict(spec['state_dict'])
model.eval()
return model
def get_extra_state(self):
return { 'speaker_map': self.speaker_map }
def set_extra_state(self, st):
self.speaker_map = st['speaker_map']
def load_checkpoint(self, local_filename):
spec = torch.load(local_filename, map_location='cpu')
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
state_dict = {k.replace('model.', ''):v
for k,v in spec['state_dict'].items()}
self.load_state_dict(state_dict)
return self
def save_model(self, fname):
torch.save(dict(config = self.__stored_args__,
tunables = dataclasses.asdict(self.tunables),
state_dict = self.state_dict()), fname)
@property
def device(self):
return next(self.parameters()).device
@torch.no_grad()
def generate(self, stoks, speakers, N=None, T=0.7, top_k=None, show_progress_bar=True):
dev = self.device
if self.stoks_len == 1500:
N = N or len(stoks) * 3 // 2
else:
N = N or len(stoks) * 3
stoks = F.pad(stoks.to(dev), (0, self.stoks_len - len(stoks)), value=self.stoks_codes-1).unsqueeze(0)
speakers = torch.tensor([self.speaker_map[spk] for spk in speakers], device=dev)
toks = torch.zeros((1,self.quantizers,N), dtype=torch.long, device=dev)
it = range(0,N)
if show_progress_bar: it = progress_bar(it)
for i in it:
p = self(stoks, toks[:,:,:i], speakers, noloss=True)
last_p = p[0,:,-1]
if top_k:
last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf
for j,tok in enumerate(torch.multinomial((last_p / float(T)).softmax(-1), 1)):
toks[0,j,max(0,i-j)] = tok
if toks[0,0,i] == 1024: return toks[0,:,:i]
return toks[0]
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 37
def _make_model(size:str, quantizers:int=4, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None, **kwargs):
assert(dataset is not None)
kwargs = dict(speaker_map=dataset.speakers, quantizers=quantizers, tunables=tunables, **kwargs)
if size == 'micro':
return SADelARTransformer(depth=4, n_head=3, ffn_mult=2, **kwargs)
if size == 'tiny-narrow':
return SADelARTransformer(depth=4, n_head=6, ffn_mult=1, **kwargs)
if size == 'tiny':
return SADelARTransformer(depth=4, n_head=6, **kwargs)
if size == 'base':
return SADelARTransformer(depth=6, n_head=8, **kwargs)
if size == 'base-deep':
return SADelARTransformer(depth=9, n_head=8, **kwargs)
if size == 'base-wide':
return SADelARTransformer(depth=6, n_head=12, **kwargs)
if size == 'small/2':
return SADelARTransformer(depth=9, n_head=12, **kwargs)
if size == 'small':
return SADelARTransformer(depth=12, n_head=12, **kwargs)
if size == 'medium':
return SADelARTransformer(depth=24, n_head=16, **kwargs)
def make_model(size:str, quantizers:int=4, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
if frozen_embeddings_model:
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model)
model = _make_model(size, quantizers, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
model.load_frozen_semantic_embeddings(vqmodel)
else:
model = _make_model(size, quantizers, tunables, dataset)
return model
|