File size: 24,606 Bytes
33d9042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb.

# %% auto 0
__all__ = ['load_dataset', 'DelSumEmbedding', 'DelSumHead', 'rand', 'Tunables', 'SADelARTransformer']

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 1
import io
import time
import math
import random
import dataclasses

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 2
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.profiler import profile, record_function, ProfilerActivity, schedule
from fastcore.basics import store_attr
from huggingface_hub import hf_hub_download

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 3
from pathlib import Path
import json
from fastprogress import progress_bar, master_bar

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 4
from .modules import *

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 8
def rand(start, end):
    return random.random() * (end - start) + start

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 9
def random_trunc(random_trunc_p, atoks_len = 2250, stoks_len = 750):
    atoks_per_second = atoks_len / 30
    def _trunc(samples):
        for s in samples:
            if random.random() < random_trunc_p:
                seconds = rand(0.3, 30)
                s['atoks.npy'] = s['atoks.npy'][:,:math.ceil(seconds * atoks_per_second)]
            s['stoks.npy'] = s['stoks.npy'][:math.ceil(s['atoks.npy'].shape[-1]/atoks_len*stoks_len)]
            yield s
    return _trunc

def pad_samples(atoks_len = 2250, stoks_len = 750, stoks_pad_token = 4096):
    def _pad(samples):
        for s in samples:
            s['stoks.npy'] = F.pad(torch.tensor(s['stoks.npy']), (1, stoks_len - s['stoks.npy'].shape[-1]-1), value=stoks_pad_token)
            s['out_stoks'] = F.pad(torch.tensor(s['stoks.npy']), (0, stoks_len - s['stoks.npy'].shape[-1]), value=stoks_pad_token)
            s['atoks.npy'] = F.pad(torch.tensor(s['atoks.npy']), (0, atoks_len - s['atoks.npy'].shape[-1]), value=-100)
            yield s
    return _pad

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 10
def make_speaker_map(shards):
    speakers = set()
    for shard in shards:
        with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines()))
    return {id:i for i,id in enumerate(sorted(speakers))}

def speaker_id_extractor(speaker_map):
    def _extractor(samples):
        for s in samples:
            s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]])
            yield s
    return _extractor

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 27
def load_dataset(
        atoks_shard_spec:str,             # webdataset folder
        stoks_shard_dir:str,   # stoks webdataset base dir
        samples:int,           # samples per epoch
        random_trunc_p:float=0,# probability of truncating the input to less than 30 seconds
        vq_codes:int=4096,
        language:str='en',
        weight:float=1,
        validation:bool=False,
        exclude_files:str=None,
        randomize_speakers:bool=False,
    ):
    import webdataset as wds
    from whisperspeech import utils

    shards = utils.shard_glob(atoks_shard_spec)
    excludes = {x for file in exclude_files.split() for x in utils.readlines(file)} if exclude_files else set()
    
    def check_for_nan(s):
        if torch.tensor(s['spk_emb.npy']).isnan().any(): print("found NaN:", s['__key__'])
        return s
    
    def set_language(x):
        x['language'] = language
        return x
    
    same_on_all_nodes = lambda urls: urls # will only be used for validation
    ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose(
        wds.decode(),
        utils.merge_in(utils.derived_dataset('maxvad-stoks', base='atoks-3kbps', suffix='', dir=stoks_shard_dir)),
        wds.map(check_for_nan),
        wds.select(lambda s: s['__key__'] not in excludes),
        wds.map_dict(**{'spk_emb.npy':np.nan_to_num}), # remove nans from the speaker embedding model
        random_trunc(random_trunc_p) if random_trunc_p > 0 else lambda x: x,
        pad_samples(stoks_pad_token=vq_codes-1),
        wds.map(set_language),
        wds.to_tuple('stoks.npy', 'atoks.npy', 'spk_emb.npy', 'language', 'out_stoks'),
        wds.shuffle(20000, initial=20000),
        wds.batched(64),
    )
    if randomize_speakers:
        rng = np.random.default_rng()
        ds = ds.compose(
            wds.map_tuple(None, None, lambda x: rng.permutation(x), None),
        )
    if validation:
        ds = ds.slice(samples // 64)
    ds.total_samples = samples
    ds.weight = weight
    
    return ds

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 37
class DelSumEmbedding(nn.Module):
    def __init__(self, n_head=6, head_width=64, atoks_width=None, length=2250, codes=1024, quantizers=8, pos_embs=None):
        super().__init__()
        self.length = length
        width = n_head * head_width
        if atoks_width is None: atoks_width = width
        self.width = width
        self.quantizers = quantizers

        emb = None
        embs = []
        for _ in range(quantizers):
            emb = FlexEmbeddings(codes, width, special_codes=2, frozen_width=atoks_width,
                                 special_embedding=emb and emb.special)
            embs.append(emb)
        self.embeddings = nn.ModuleList(embs)
        if pos_embs is not None:
            self.register_buffer("positional_embedding", pos_embs)

    def forward(self, toks, xenc):
        with record_function("embeddings"):
            b,_,n = toks.shape
            newn = min(n, self.length)

            embs = torch.zeros((b,newn,self.width), dtype=xenc.dtype, device=xenc.device)
            for i in range(self.quantizers):
                embs[:, :] += self.embeddings[i](toks[:,i,:])
            
            x = embs.to(xenc.dtype)
        return x

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 38
class DelSumHead(nn.Module):
    def __init__(self, quantizers=8, n_head=6, head_width=64):
        super().__init__()
        self.width = n_head * head_width
        self.quantizers = quantizers
        self.splitter = nn.Sequential(
            nn.Linear(self.width, self.width * quantizers),
            nn.GELU(),
        )

    def forward(self, x, embeddings=None):
        b, newn, _ = x.shape
        with record_function("splitter"):
            split = self.splitter(x).view(b,newn,self.quantizers,self.width)
        with record_function("unembed"):
            logits = torch.stack([embeddings[q].unembed(split[:,:,q]) for q in range(self.quantizers)], dim=1)
        return logits
        
def rand(start, end):
    return random.random() * (end - start) + start
    
@dataclasses.dataclass
class Tunables:
    init_std :float = 9
    embeddings_std :float = 0.2
    embeddings_lr_scale: float = 10
    output_mult :float = 5.6
    # FIXME: try separate mults for self and cross attention
    query_mult :float = .3
    encoder_depth_ratio :float = 0.25
    linear_heads :bool = False
    rope :bool = True
    
    lr0 :float = 3e-3
    clip_gradient_norm :float = 2
    weight_decay :float = 1e-3
    warmup_steps :float = 2000

    random :bool = False

    def __post_init__(self):
        # randomize the hyperparams if requested
        if self.random:
            self.init_std = 2*10**rand(0,1)
            self.embeddings_std = 10**rand(-1.7,-0.22)
            self.embeddings_lr_scale = 2**rand(2,4)
            self.output_mult = 2**rand(1.5,3)
            self.query_mult = 2**rand(-3,-1.3)
            self.encoder_depth_ratio = random.choice([0.25,0.5])
            self.linear_heads = False
            self.rope = True
            
            self.lr0 = 3e-3
            self.clip_gradient_norm = 10**rand(-1,1)
            self.warmup_steps = 100*(10**rand(1.18,1.3))
            
    @staticmethod
    def upgrade(args):
        args = {k:v for k,v in args.items()}
        def old_default(name, value):
            if name not in args: args[name] = value
        old_default('rope', False)
        old_default('linear_heads', True)
        return args
            
class SADelARTransformer(nn.Module):
    def __init__(self, depth=3, ctx_n=2250,
                 stoks_len=750, stoks_codes=4097, stoks_width=None,
                 spk_width=None,
                 atoks_width=None,
                 n_head=3, head_width=64, ffn_mult=4,
                 quantizers=8, speaker_map={"1":0}, tunables=Tunables()):
        super().__init__()
        self.quantizers = quantizers
        self.codes = 1024
        width = n_head * head_width
        store_attr("depth,ctx_n,stoks_len,stoks_codes,stoks_width,spk_width,atoks_width,n_head,head_width,ffn_mult,quantizers,speaker_map")
        self.width = width
        self.base_width = 3 * head_width
        self.tunables = tunables
        
        if stoks_width is None: stoks_width = width
        if spk_width is None: spk_width = width
        self.emb_factor = width != stoks_width
        self.spk_factor = width != spk_width

        if tunables.rope:
            self.positional_embeddings = None
        else:
            self.register_buffer('positional_embeddings', sinusoids(ctx_n, width))
        
#         self.speaker_embedding = nn.Embedding(len(speaker_map), spk_width)
        self.semantic_embedding = nn.Embedding(stoks_codes, stoks_width)
        if self.emb_factor:
            self.emb_to_hidden = nn.Linear(stoks_width, width)
            self.hidden_to_emb = nn.Linear(width, stoks_width)
        
        if self.spk_factor:
            self.spk_to_hidden = nn.Linear(spk_width, width)

        qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width)
        
        encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
        decoder_depth = depth * 2 - encoder_depth
        self.encoder = nn.Sequential(*[
            ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(encoder_depth)
        ]) # FIXME: enclm requires causal attention here
        self.ln_post = LayerNorm(width)

        self.embds = DelSumEmbedding(
            pos_embs=self.positional_embeddings, length=ctx_n,
            n_head=n_head, head_width=head_width, atoks_width=atoks_width,
            quantizers=quantizers,
        )
        self.decoder = BaseDecoder(qk_scale=qk_scale, length=ctx_n,
                                     n_head=n_head, width=n_head * head_width, 
                                     ffn_mult=ffn_mult, depth=decoder_depth,
                                     rope=tunables.rope)
        self.head = DelSumHead(n_head=n_head, head_width=head_width, quantizers=quantizers)
        for l in self.decoder.layers:
            l.cross_attn.key_subsampling = 3
#         for l in self.encoder:
#             l.attn.key_subsampling = 3
#             l.attn.query_subsampling = 3
        
        self.register_buffer('val_true', torch.zeros(self.quantizers).cuda())
        self.register_buffer('val_total', torch.zeros(self.quantizers).cuda())
        self.apply(self.init_transformer)

    def setup(self, device):
        pass
        
    def load_frozen_semantic_embeddings(self, vqmodel):
        with torch.no_grad():
            self.semantic_embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0]
            self.semantic_embedding.lr_scale = 0

    def load_frozen_acoustic_embeddings(self, amodel):
        for i in range(self.quantizers):
            self.decoder.embeddings[i].set_frozen_embeddings(amodel.quantizer.vq.layers[i].codebook)
            
    def init_transformer(self, m):
        if isinstance(m, LinearHead):
            m.no_weight_decay = True
            torch.nn.init.constant_(m.weight, 0)
        elif isinstance(m, QueryHead):
            m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
            torch.nn.init.constant_(m.weight, 0)
        elif isinstance(m, nn.Embedding):
            m.no_weight_decay = True
            m.lr_scale = self.tunables.embeddings_lr_scale
            std = self.tunables.embeddings_std
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
#         elif isinstance(m, EmbeddingProjector):
#             m.lr_scale = self.tunables.embeddings_lr_scale #1/(m.weight.shape[1] / self.base_width)
#             m.lr_scale = 2/(m.weight.shape[1] / self.base_width)
#             std = self.tunables.init_std / m.weight.shape[1]
#             torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
        elif isinstance(m, nn.Linear):
            m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
            std = self.tunables.init_std / m.weight.shape[1]
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
            if m.bias is not None:
                torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
        elif isinstance(m, nn.LayerNorm):
            m.no_weight_decay = True
            torch.nn.init.constant_(m.bias, 0)
            torch.nn.init.constant_(m.weight, 1)

    def embed_stoks(self, Stoks):
        b,n = Stoks.shape
        if self.stoks_len == 1500:
            # converts 50 toks/s to 75 toks/s by adding padding between every two tokens
            x = Stoks.reshape(b,n//2,2)
            x = x.repeat_interleave(2, -1)[:,:,:3]
            x[:,:,1] = 1024
            x = x.reshape(b,n//2*3)
        else:
            # it's a lot easier with 25 toks/s
#             x = Stoks.repeat_interleave(3, -1)
            x = Stoks
        # embed semantic tokens
        Sembs = self.semantic_embedding(x.to(torch.long))
        if self.emb_factor:
            Sembs = self.emb_to_hidden(Sembs)
        return Sembs

    def _encoder(self, semb, positions):
        x = semb
        for l in self.encoder: x = l(x, positions)
        return self.ln_post(x)
    
    def run_encoder(self, Stoks, speakers):
        semb = self.embed_stoks(Stoks)
        with record_function("encoder"):
            if self.positional_embeddings is not None: semb = semb + self.positional_embeddings
            positions = torch.arange(0, semb.shape[1], device=semb.device)
            xenc = self._encoder(semb, positions)
        if self.training:
            enc_logits = (self.hidden_to_emb(xenc) @ self.semantic_embedding.weight.to(xenc.dtype).T).float()
            enc_logits = enc_logits * self.tunables.output_mult / (self.width / self.base_width)
        else:
            enc_logits = None
#         print(xenc.shape, speakers.shape)
        spk_embs = F.normalize(speakers, dim=-1) # use extracted embeddings
        if self.spk_factor: spk_embs = self.spk_to_hidden(spk_embs)
        return xenc + spk_embs.unsqueeze(1), positions, enc_logits

    def forward(self, Stoks, Atoks, speakers, langs=None, out_stoks=None, noloss=False, xenc=None, xenc_positions=None, atoks_positions=None):
        if xenc is None:
            Atoks = Atoks.to(torch.long)
            out_stoks = out_stoks.to(torch.long)
            Atoks_gt = Atoks.clone()
            Atoks_gt[Atoks == -100] = 1024
            xenc, enc_logits = self.run_encoder(Stoks, speakers)
        else:
            Atoks_gt = Atoks
        with record_function("decoder"):
            embs = self.embds(Atoks, xenc)
            if atoks_positions is None: atoks_positions = torch.arange(0, embs.shape[1], device=embs.device)
            x = self.decoder(embs, atoks_positions, xenc, xenc_positions)
            logits = self.head(x, embeddings=self.embds.embeddings)
            logits *= self.tunables.output_mult / (self.width / self.base_width)
            
        if noloss:
            return logits

        with record_function("loss"):
            N = Atoks.shape[-1]
            loss = 0
            for i in range(self.quantizers):
                loss += F.cross_entropy(logits[:,i,i:].reshape(-1,logits.shape[-1]), Atoks[:,i,:N-i].reshape(-1))
                if self.training and i == 0:
                    loss *= 5
            loss /= self.quantizers
            if self.training:
                loss += 0.1 * F.cross_entropy(enc_logits.transpose(-1,-2), out_stoks)

        if not self.training:
            for i in range(self.quantizers):
                Atoks_i = Atoks[:,i,:N-i]
                valid_Atoks = Atoks_i != -100
                self.val_true[i] += (logits[:,i,i:].argmax(-1)[valid_Atoks] == Atoks_i[valid_Atoks]).float().sum()
                self.val_total[i] += valid_Atoks.float().sum()

        return logits, loss

    def get_metrics(self):
        metrics = {
            f'acc_{i}':x.item() for i,x in enumerate(self.val_true / self.val_total)
        }
        self.val_true[:] = 0
        self.val_total[:] = 0
        return metrics

    #
    # inference
    #
    @classmethod
    def load_model(cls, ref="collabora/whisperspeech:s2a-q4-small-en+pl.model",
                   repo_id=None, filename=None, local_filename=None):
        if repo_id is None and filename is None and local_filename is None:
            if ":" in ref:
                repo_id, filename = ref.split(":", 1)
            else:
                local_filename = ref
        if not local_filename:
            local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
        spec = torch.load(local_filename)
        if '_extra_state' not in spec['state_dict']: spec['state_dict']['_extra_state'] = { 'speaker_map': spec['config']['speaker_map'] }
        model = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec['tunables'])))
        model.load_state_dict(spec['state_dict'])
        model.eval()
        return model
    
    def get_extra_state(self):
        return { 'speaker_map': self.speaker_map }
    
    def set_extra_state(self, st):
        self.speaker_map = st['speaker_map']

    def load_checkpoint(self, local_filename):
        spec = torch.load(local_filename, map_location='cpu')
        assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
        state_dict = {k.replace('model.', ''):v
                      for k,v in spec['state_dict'].items()}
        self.load_state_dict(state_dict)
        return self
    
    def save_model(self, fname):
        torch.save(dict(config = self.__stored_args__,
                        tunables = dataclasses.asdict(self.tunables),
                        state_dict = self.state_dict()), fname)

    def switch_dtypes(self, dtype=torch.float16):
        self.dtype = dtype
        for n,m in self.named_modules():
            # convert every leaf layer apart from the LayerNorms
            if isinstance(m, (nn.Linear, nn.Embedding)):
                m.to(dtype)
            # take care of buffers ([kv]_cache, masks) that are not in the leaf layers
            for bn,b in m.named_buffers(recurse=False):
                setattr(m,bn,b.to(dtype))

    def optimize(self, max_batch_size=1, dtype=torch.float16, torch_compile=True):
        for emb in self.embds.embeddings:
            emb.convert_for_eval()
        for l in self.encoder:
            l.attn.convert_for_eval()
        for l in self.decoder.layers:
            l.attn.convert_for_eval()
            l.cross_attn.convert_for_eval()
            l.setup_kv_cache(max_batch_size, self.ctx_n, self.stoks_len)
        self.switch_dtypes(dtype)
        if torch_compile:
            self.generate_next = torch.compile(self.generate_next, mode="reduce-overhead", fullgraph=True)

    @property
    def device(self):
        return next(self.parameters()).device

    # from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
    def multinomial_sample_one_no_sync(self, probs_sort): # Does multinomial sampling without a cuda synchronization
        q = torch.empty_like(probs_sort).exponential_(1)
        return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)

    def logits_to_probs(self, logits, T=1.0, top_k=None):
        logits = logits / max(T, 1e-5)

        if top_k is not None:
            v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
            pivot = v.select(-1, -1).unsqueeze(-1)
            logits = torch.where(logits < pivot, -float("Inf"), logits)
        probs = torch.nn.functional.softmax(logits, dim=-1)
        return probs

    def sample(self, logits, T=1.0, top_k=None):
        probs = self.logits_to_probs(logits[0,:,-1], T, top_k)
        idx_next = self.multinomial_sample_one_no_sync(probs)
        return idx_next

    def generate_one(self, toks, positions, langs, xenc, xenc_positions, T, top_k):
        probs = self(None, toks, None, langs, noloss=True, xenc=xenc, xenc_positions=xenc_positions, atoks_positions=positions)
        return self.sample(probs, T, top_k)

    def generate_next(self, *args, **kwargs):
        return self.generate_one(*args, **kwargs)
    
    @torch.no_grad()
    def generate(self, stoks, speakers, langs=None, N=None, T=0.7, top_k=None, show_progress_bar=True, step=None, subsample_enc=False):
        dev = self.device
        N = N or len(stoks) * 3
        stoks = F.pad(stoks.to(dev), (1, self.stoks_len - len(stoks)-1), value=self.stoks_codes-1).unsqueeze(0)
        speakers = speakers.to(device=dev, dtype=self.dtype)
        toks = torch.full((1,self.quantizers,2250), self.codes+1, dtype=torch.long, device=dev)
        it = range(1,min(N,2250-1))
        if show_progress_bar: it = progress_bar(it)
        with record_function("encode"):
            xenc, xenc_positions, _ = self.run_encoder(stoks, speakers)
            toks_positions = torch.arange(N, device=dev)
        with record_function("prefill"):
            toks[0,0,1] = self.generate_one(toks[:,:,:1], toks_positions[:1], langs, xenc, xenc_positions, T, top_k)[0,0]
        with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
            for i in it:
                with record_function("generate_one"):
                    toks[0,:i+1,i+1] = self.generate_next(toks[:,:,i:i+1], toks_positions[i:i+1], langs, xenc, xenc_positions, T, top_k)[:i+1,0]

                # for profiling, debugging or early exit
                if step is not None: step()
        # shift tokens
        toks = toks[:,:,1:N]
        for j in range(self.quantizers):
            toks[0, j] = torch.roll(toks[0, j], -j)
        return toks[0]

# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 39
def _make_model(size:str, quantizers:int=4, tunables:Tunables=Tunables(), **kwargs):
    kwargs = dict(quantizers=quantizers, tunables=tunables, **kwargs)
    if size == 'micro':
        return SADelARTransformer(depth=4, n_head=3, ffn_mult=2, **kwargs)
    if size == 'tiny-narrow':
        return SADelARTransformer(depth=4, n_head=6, ffn_mult=1, **kwargs)
    if size == 'tiny':
        return SADelARTransformer(depth=4, n_head=6, **kwargs)
    if size == 'base':
        return SADelARTransformer(depth=6, n_head=8, **kwargs)
    if size == 'base-deep':
        return SADelARTransformer(depth=9, n_head=8, **kwargs)
    if size == 'base-wide':
        return SADelARTransformer(depth=6, n_head=12, **kwargs)
    if size == 'small/2':
        return SADelARTransformer(depth=9, n_head=12, **kwargs)
    if size == 'small':
        return SADelARTransformer(depth=12, n_head=12, **kwargs)
    if size == 'medium':
        return SADelARTransformer(depth=24, n_head=16, **kwargs)

def make_model(size:str, quantizers:int=4, frozen_embeddings_model:str=None, frozen_acoustic_embeddings:bool=False, spk_width:int=None, tunables:Tunables=Tunables(), dataset=None):
    from encodec.model import EncodecModel
    from whisperspeech import vq_stoks

    amodel = EncodecModel.encodec_model_24khz() if frozen_acoustic_embeddings else None
    vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model) if frozen_embeddings_model else None
    model = _make_model(size, quantizers, tunables,
                        spk_width=spk_width,
                        atoks_width=amodel and amodel.quantizer.vq.layers[0]._codebook.embed.shape[-1],
                        stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
    if vqmodel: model.load_frozen_semantic_embeddings(vqmodel)
    if amodel: model.load_frozen_acoustic_embeddings(amodel)
    return model