Spaces:
Running
on
T4
Running
on
T4
File size: 24,606 Bytes
33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb.
# %% auto 0
__all__ = ['load_dataset', 'DelSumEmbedding', 'DelSumHead', 'rand', 'Tunables', 'SADelARTransformer']
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 1
import io
import time
import math
import random
import dataclasses
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 2
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.profiler import profile, record_function, ProfilerActivity, schedule
from fastcore.basics import store_attr
from huggingface_hub import hf_hub_download
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 3
from pathlib import Path
import json
from fastprogress import progress_bar, master_bar
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 4
from .modules import *
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 8
def rand(start, end):
return random.random() * (end - start) + start
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 9
def random_trunc(random_trunc_p, atoks_len = 2250, stoks_len = 750):
atoks_per_second = atoks_len / 30
def _trunc(samples):
for s in samples:
if random.random() < random_trunc_p:
seconds = rand(0.3, 30)
s['atoks.npy'] = s['atoks.npy'][:,:math.ceil(seconds * atoks_per_second)]
s['stoks.npy'] = s['stoks.npy'][:math.ceil(s['atoks.npy'].shape[-1]/atoks_len*stoks_len)]
yield s
return _trunc
def pad_samples(atoks_len = 2250, stoks_len = 750, stoks_pad_token = 4096):
def _pad(samples):
for s in samples:
s['stoks.npy'] = F.pad(torch.tensor(s['stoks.npy']), (1, stoks_len - s['stoks.npy'].shape[-1]-1), value=stoks_pad_token)
s['out_stoks'] = F.pad(torch.tensor(s['stoks.npy']), (0, stoks_len - s['stoks.npy'].shape[-1]), value=stoks_pad_token)
s['atoks.npy'] = F.pad(torch.tensor(s['atoks.npy']), (0, atoks_len - s['atoks.npy'].shape[-1]), value=-100)
yield s
return _pad
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 10
def make_speaker_map(shards):
speakers = set()
for shard in shards:
with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines()))
return {id:i for i,id in enumerate(sorted(speakers))}
def speaker_id_extractor(speaker_map):
def _extractor(samples):
for s in samples:
s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]])
yield s
return _extractor
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 27
def load_dataset(
atoks_shard_spec:str, # webdataset folder
stoks_shard_dir:str, # stoks webdataset base dir
samples:int, # samples per epoch
random_trunc_p:float=0,# probability of truncating the input to less than 30 seconds
vq_codes:int=4096,
language:str='en',
weight:float=1,
validation:bool=False,
exclude_files:str=None,
randomize_speakers:bool=False,
):
import webdataset as wds
from whisperspeech import utils
shards = utils.shard_glob(atoks_shard_spec)
excludes = {x for file in exclude_files.split() for x in utils.readlines(file)} if exclude_files else set()
def check_for_nan(s):
if torch.tensor(s['spk_emb.npy']).isnan().any(): print("found NaN:", s['__key__'])
return s
def set_language(x):
x['language'] = language
return x
same_on_all_nodes = lambda urls: urls # will only be used for validation
ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose(
wds.decode(),
utils.merge_in(utils.derived_dataset('maxvad-stoks', base='atoks-3kbps', suffix='', dir=stoks_shard_dir)),
wds.map(check_for_nan),
wds.select(lambda s: s['__key__'] not in excludes),
wds.map_dict(**{'spk_emb.npy':np.nan_to_num}), # remove nans from the speaker embedding model
random_trunc(random_trunc_p) if random_trunc_p > 0 else lambda x: x,
pad_samples(stoks_pad_token=vq_codes-1),
wds.map(set_language),
wds.to_tuple('stoks.npy', 'atoks.npy', 'spk_emb.npy', 'language', 'out_stoks'),
wds.shuffle(20000, initial=20000),
wds.batched(64),
)
if randomize_speakers:
rng = np.random.default_rng()
ds = ds.compose(
wds.map_tuple(None, None, lambda x: rng.permutation(x), None),
)
if validation:
ds = ds.slice(samples // 64)
ds.total_samples = samples
ds.weight = weight
return ds
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 37
class DelSumEmbedding(nn.Module):
def __init__(self, n_head=6, head_width=64, atoks_width=None, length=2250, codes=1024, quantizers=8, pos_embs=None):
super().__init__()
self.length = length
width = n_head * head_width
if atoks_width is None: atoks_width = width
self.width = width
self.quantizers = quantizers
emb = None
embs = []
for _ in range(quantizers):
emb = FlexEmbeddings(codes, width, special_codes=2, frozen_width=atoks_width,
special_embedding=emb and emb.special)
embs.append(emb)
self.embeddings = nn.ModuleList(embs)
if pos_embs is not None:
self.register_buffer("positional_embedding", pos_embs)
def forward(self, toks, xenc):
with record_function("embeddings"):
b,_,n = toks.shape
newn = min(n, self.length)
embs = torch.zeros((b,newn,self.width), dtype=xenc.dtype, device=xenc.device)
for i in range(self.quantizers):
embs[:, :] += self.embeddings[i](toks[:,i,:])
x = embs.to(xenc.dtype)
return x
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 38
class DelSumHead(nn.Module):
def __init__(self, quantizers=8, n_head=6, head_width=64):
super().__init__()
self.width = n_head * head_width
self.quantizers = quantizers
self.splitter = nn.Sequential(
nn.Linear(self.width, self.width * quantizers),
nn.GELU(),
)
def forward(self, x, embeddings=None):
b, newn, _ = x.shape
with record_function("splitter"):
split = self.splitter(x).view(b,newn,self.quantizers,self.width)
with record_function("unembed"):
logits = torch.stack([embeddings[q].unembed(split[:,:,q]) for q in range(self.quantizers)], dim=1)
return logits
def rand(start, end):
return random.random() * (end - start) + start
@dataclasses.dataclass
class Tunables:
init_std :float = 9
embeddings_std :float = 0.2
embeddings_lr_scale: float = 10
output_mult :float = 5.6
# FIXME: try separate mults for self and cross attention
query_mult :float = .3
encoder_depth_ratio :float = 0.25
linear_heads :bool = False
rope :bool = True
lr0 :float = 3e-3
clip_gradient_norm :float = 2
weight_decay :float = 1e-3
warmup_steps :float = 2000
random :bool = False
def __post_init__(self):
# randomize the hyperparams if requested
if self.random:
self.init_std = 2*10**rand(0,1)
self.embeddings_std = 10**rand(-1.7,-0.22)
self.embeddings_lr_scale = 2**rand(2,4)
self.output_mult = 2**rand(1.5,3)
self.query_mult = 2**rand(-3,-1.3)
self.encoder_depth_ratio = random.choice([0.25,0.5])
self.linear_heads = False
self.rope = True
self.lr0 = 3e-3
self.clip_gradient_norm = 10**rand(-1,1)
self.warmup_steps = 100*(10**rand(1.18,1.3))
@staticmethod
def upgrade(args):
args = {k:v for k,v in args.items()}
def old_default(name, value):
if name not in args: args[name] = value
old_default('rope', False)
old_default('linear_heads', True)
return args
class SADelARTransformer(nn.Module):
def __init__(self, depth=3, ctx_n=2250,
stoks_len=750, stoks_codes=4097, stoks_width=None,
spk_width=None,
atoks_width=None,
n_head=3, head_width=64, ffn_mult=4,
quantizers=8, speaker_map={"1":0}, tunables=Tunables()):
super().__init__()
self.quantizers = quantizers
self.codes = 1024
width = n_head * head_width
store_attr("depth,ctx_n,stoks_len,stoks_codes,stoks_width,spk_width,atoks_width,n_head,head_width,ffn_mult,quantizers,speaker_map")
self.width = width
self.base_width = 3 * head_width
self.tunables = tunables
if stoks_width is None: stoks_width = width
if spk_width is None: spk_width = width
self.emb_factor = width != stoks_width
self.spk_factor = width != spk_width
if tunables.rope:
self.positional_embeddings = None
else:
self.register_buffer('positional_embeddings', sinusoids(ctx_n, width))
# self.speaker_embedding = nn.Embedding(len(speaker_map), spk_width)
self.semantic_embedding = nn.Embedding(stoks_codes, stoks_width)
if self.emb_factor:
self.emb_to_hidden = nn.Linear(stoks_width, width)
self.hidden_to_emb = nn.Linear(width, stoks_width)
if self.spk_factor:
self.spk_to_hidden = nn.Linear(spk_width, width)
qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width)
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
decoder_depth = depth * 2 - encoder_depth
self.encoder = nn.Sequential(*[
ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(encoder_depth)
]) # FIXME: enclm requires causal attention here
self.ln_post = LayerNorm(width)
self.embds = DelSumEmbedding(
pos_embs=self.positional_embeddings, length=ctx_n,
n_head=n_head, head_width=head_width, atoks_width=atoks_width,
quantizers=quantizers,
)
self.decoder = BaseDecoder(qk_scale=qk_scale, length=ctx_n,
n_head=n_head, width=n_head * head_width,
ffn_mult=ffn_mult, depth=decoder_depth,
rope=tunables.rope)
self.head = DelSumHead(n_head=n_head, head_width=head_width, quantizers=quantizers)
for l in self.decoder.layers:
l.cross_attn.key_subsampling = 3
# for l in self.encoder:
# l.attn.key_subsampling = 3
# l.attn.query_subsampling = 3
self.register_buffer('val_true', torch.zeros(self.quantizers).cuda())
self.register_buffer('val_total', torch.zeros(self.quantizers).cuda())
self.apply(self.init_transformer)
def setup(self, device):
pass
def load_frozen_semantic_embeddings(self, vqmodel):
with torch.no_grad():
self.semantic_embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0]
self.semantic_embedding.lr_scale = 0
def load_frozen_acoustic_embeddings(self, amodel):
for i in range(self.quantizers):
self.decoder.embeddings[i].set_frozen_embeddings(amodel.quantizer.vq.layers[i].codebook)
def init_transformer(self, m):
if isinstance(m, LinearHead):
m.no_weight_decay = True
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, QueryHead):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, nn.Embedding):
m.no_weight_decay = True
m.lr_scale = self.tunables.embeddings_lr_scale
std = self.tunables.embeddings_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
# elif isinstance(m, EmbeddingProjector):
# m.lr_scale = self.tunables.embeddings_lr_scale #1/(m.weight.shape[1] / self.base_width)
# m.lr_scale = 2/(m.weight.shape[1] / self.base_width)
# std = self.tunables.init_std / m.weight.shape[1]
# torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.Linear):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
std = self.tunables.init_std / m.weight.shape[1]
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
if m.bias is not None:
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.LayerNorm):
m.no_weight_decay = True
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1)
def embed_stoks(self, Stoks):
b,n = Stoks.shape
if self.stoks_len == 1500:
# converts 50 toks/s to 75 toks/s by adding padding between every two tokens
x = Stoks.reshape(b,n//2,2)
x = x.repeat_interleave(2, -1)[:,:,:3]
x[:,:,1] = 1024
x = x.reshape(b,n//2*3)
else:
# it's a lot easier with 25 toks/s
# x = Stoks.repeat_interleave(3, -1)
x = Stoks
# embed semantic tokens
Sembs = self.semantic_embedding(x.to(torch.long))
if self.emb_factor:
Sembs = self.emb_to_hidden(Sembs)
return Sembs
def _encoder(self, semb, positions):
x = semb
for l in self.encoder: x = l(x, positions)
return self.ln_post(x)
def run_encoder(self, Stoks, speakers):
semb = self.embed_stoks(Stoks)
with record_function("encoder"):
if self.positional_embeddings is not None: semb = semb + self.positional_embeddings
positions = torch.arange(0, semb.shape[1], device=semb.device)
xenc = self._encoder(semb, positions)
if self.training:
enc_logits = (self.hidden_to_emb(xenc) @ self.semantic_embedding.weight.to(xenc.dtype).T).float()
enc_logits = enc_logits * self.tunables.output_mult / (self.width / self.base_width)
else:
enc_logits = None
# print(xenc.shape, speakers.shape)
spk_embs = F.normalize(speakers, dim=-1) # use extracted embeddings
if self.spk_factor: spk_embs = self.spk_to_hidden(spk_embs)
return xenc + spk_embs.unsqueeze(1), positions, enc_logits
def forward(self, Stoks, Atoks, speakers, langs=None, out_stoks=None, noloss=False, xenc=None, xenc_positions=None, atoks_positions=None):
if xenc is None:
Atoks = Atoks.to(torch.long)
out_stoks = out_stoks.to(torch.long)
Atoks_gt = Atoks.clone()
Atoks_gt[Atoks == -100] = 1024
xenc, enc_logits = self.run_encoder(Stoks, speakers)
else:
Atoks_gt = Atoks
with record_function("decoder"):
embs = self.embds(Atoks, xenc)
if atoks_positions is None: atoks_positions = torch.arange(0, embs.shape[1], device=embs.device)
x = self.decoder(embs, atoks_positions, xenc, xenc_positions)
logits = self.head(x, embeddings=self.embds.embeddings)
logits *= self.tunables.output_mult / (self.width / self.base_width)
if noloss:
return logits
with record_function("loss"):
N = Atoks.shape[-1]
loss = 0
for i in range(self.quantizers):
loss += F.cross_entropy(logits[:,i,i:].reshape(-1,logits.shape[-1]), Atoks[:,i,:N-i].reshape(-1))
if self.training and i == 0:
loss *= 5
loss /= self.quantizers
if self.training:
loss += 0.1 * F.cross_entropy(enc_logits.transpose(-1,-2), out_stoks)
if not self.training:
for i in range(self.quantizers):
Atoks_i = Atoks[:,i,:N-i]
valid_Atoks = Atoks_i != -100
self.val_true[i] += (logits[:,i,i:].argmax(-1)[valid_Atoks] == Atoks_i[valid_Atoks]).float().sum()
self.val_total[i] += valid_Atoks.float().sum()
return logits, loss
def get_metrics(self):
metrics = {
f'acc_{i}':x.item() for i,x in enumerate(self.val_true / self.val_total)
}
self.val_true[:] = 0
self.val_total[:] = 0
return metrics
#
# inference
#
@classmethod
def load_model(cls, ref="collabora/whisperspeech:s2a-q4-small-en+pl.model",
repo_id=None, filename=None, local_filename=None):
if repo_id is None and filename is None and local_filename is None:
if ":" in ref:
repo_id, filename = ref.split(":", 1)
else:
local_filename = ref
if not local_filename:
local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
spec = torch.load(local_filename)
if '_extra_state' not in spec['state_dict']: spec['state_dict']['_extra_state'] = { 'speaker_map': spec['config']['speaker_map'] }
model = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec['tunables'])))
model.load_state_dict(spec['state_dict'])
model.eval()
return model
def get_extra_state(self):
return { 'speaker_map': self.speaker_map }
def set_extra_state(self, st):
self.speaker_map = st['speaker_map']
def load_checkpoint(self, local_filename):
spec = torch.load(local_filename, map_location='cpu')
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
state_dict = {k.replace('model.', ''):v
for k,v in spec['state_dict'].items()}
self.load_state_dict(state_dict)
return self
def save_model(self, fname):
torch.save(dict(config = self.__stored_args__,
tunables = dataclasses.asdict(self.tunables),
state_dict = self.state_dict()), fname)
def switch_dtypes(self, dtype=torch.float16):
self.dtype = dtype
for n,m in self.named_modules():
# convert every leaf layer apart from the LayerNorms
if isinstance(m, (nn.Linear, nn.Embedding)):
m.to(dtype)
# take care of buffers ([kv]_cache, masks) that are not in the leaf layers
for bn,b in m.named_buffers(recurse=False):
setattr(m,bn,b.to(dtype))
def optimize(self, max_batch_size=1, dtype=torch.float16, torch_compile=True):
for emb in self.embds.embeddings:
emb.convert_for_eval()
for l in self.encoder:
l.attn.convert_for_eval()
for l in self.decoder.layers:
l.attn.convert_for_eval()
l.cross_attn.convert_for_eval()
l.setup_kv_cache(max_batch_size, self.ctx_n, self.stoks_len)
self.switch_dtypes(dtype)
if torch_compile:
self.generate_next = torch.compile(self.generate_next, mode="reduce-overhead", fullgraph=True)
@property
def device(self):
return next(self.parameters()).device
# from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
def multinomial_sample_one_no_sync(self, probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(self, logits, T=1.0, top_k=None):
logits = logits / max(T, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(self, logits, T=1.0, top_k=None):
probs = self.logits_to_probs(logits[0,:,-1], T, top_k)
idx_next = self.multinomial_sample_one_no_sync(probs)
return idx_next
def generate_one(self, toks, positions, langs, xenc, xenc_positions, T, top_k):
probs = self(None, toks, None, langs, noloss=True, xenc=xenc, xenc_positions=xenc_positions, atoks_positions=positions)
return self.sample(probs, T, top_k)
def generate_next(self, *args, **kwargs):
return self.generate_one(*args, **kwargs)
@torch.no_grad()
def generate(self, stoks, speakers, langs=None, N=None, T=0.7, top_k=None, show_progress_bar=True, step=None, subsample_enc=False):
dev = self.device
N = N or len(stoks) * 3
stoks = F.pad(stoks.to(dev), (1, self.stoks_len - len(stoks)-1), value=self.stoks_codes-1).unsqueeze(0)
speakers = speakers.to(device=dev, dtype=self.dtype)
toks = torch.full((1,self.quantizers,2250), self.codes+1, dtype=torch.long, device=dev)
it = range(1,min(N,2250-1))
if show_progress_bar: it = progress_bar(it)
with record_function("encode"):
xenc, xenc_positions, _ = self.run_encoder(stoks, speakers)
toks_positions = torch.arange(N, device=dev)
with record_function("prefill"):
toks[0,0,1] = self.generate_one(toks[:,:,:1], toks_positions[:1], langs, xenc, xenc_positions, T, top_k)[0,0]
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
for i in it:
with record_function("generate_one"):
toks[0,:i+1,i+1] = self.generate_next(toks[:,:,i:i+1], toks_positions[i:i+1], langs, xenc, xenc_positions, T, top_k)[:i+1,0]
# for profiling, debugging or early exit
if step is not None: step()
# shift tokens
toks = toks[:,:,1:N]
for j in range(self.quantizers):
toks[0, j] = torch.roll(toks[0, j], -j)
return toks[0]
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 39
def _make_model(size:str, quantizers:int=4, tunables:Tunables=Tunables(), **kwargs):
kwargs = dict(quantizers=quantizers, tunables=tunables, **kwargs)
if size == 'micro':
return SADelARTransformer(depth=4, n_head=3, ffn_mult=2, **kwargs)
if size == 'tiny-narrow':
return SADelARTransformer(depth=4, n_head=6, ffn_mult=1, **kwargs)
if size == 'tiny':
return SADelARTransformer(depth=4, n_head=6, **kwargs)
if size == 'base':
return SADelARTransformer(depth=6, n_head=8, **kwargs)
if size == 'base-deep':
return SADelARTransformer(depth=9, n_head=8, **kwargs)
if size == 'base-wide':
return SADelARTransformer(depth=6, n_head=12, **kwargs)
if size == 'small/2':
return SADelARTransformer(depth=9, n_head=12, **kwargs)
if size == 'small':
return SADelARTransformer(depth=12, n_head=12, **kwargs)
if size == 'medium':
return SADelARTransformer(depth=24, n_head=16, **kwargs)
def make_model(size:str, quantizers:int=4, frozen_embeddings_model:str=None, frozen_acoustic_embeddings:bool=False, spk_width:int=None, tunables:Tunables=Tunables(), dataset=None):
from encodec.model import EncodecModel
from whisperspeech import vq_stoks
amodel = EncodecModel.encodec_model_24khz() if frozen_acoustic_embeddings else None
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model) if frozen_embeddings_model else None
model = _make_model(size, quantizers, tunables,
spk_width=spk_width,
atoks_width=amodel and amodel.quantizer.vq.layers[0]._codebook.embed.shape[-1],
stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
if vqmodel: model.load_frozen_semantic_embeddings(vqmodel)
if amodel: model.load_frozen_acoustic_embeddings(amodel)
return model
|