File size: 21,555 Bytes
33d9042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/2B. Whisper quantization (semantic token) model.ipynb.

# %% auto 0
__all__ = ['RQBottleneckTransformer', 'make_model']

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 2
import io
import sys
import time
import torch
import torchaudio

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 3
from pathlib import Path
import json
from fastprogress import progress_bar, master_bar
import fastprogress
import numpy as np
import pylab as plt
import pandas as pd
import random

import whisper
from huggingface_hub import hf_hub_download
from fastcore.basics import store_attr

from torch import nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
import webdataset as wds
from . import utils

from vector_quantize_pytorch import ResidualVQ

from fastcore.script import *

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 9
def merge_in(dataset_fun):
    """Merge a dataset into the current one returning samples with the union of keys. Pass in a function
    that takes a URL of a sample and returns a dataset for it (called everytime the URL changes).
    
    It requires (and validates) that both datasets have the same ordering of keys so you have
    to use it before any sample shuffling. Shard shuffling is ok.
    """
    def merge_loop(main_samples):
        #print("new merge loop:", dataset_fun)
        merged_samples = None
        cur_url = None
        i = None
        for s in main_samples:
            url = s['__url__']
            if url != cur_url:
                # this will open a new file when we get the first sample with a new __url__
                merged_samples = iter(dataset_fun(url))
                cur_url = url
            try:
                merge_s = next(merged_samples)
            except StopIteration:
                # if the original shard got repeated we won't observe a __url__ change
                # in this case restart the dataset from the beginning
                merged_samples = iter(dataset_fun(url))
                merge_s = next(merged_samples)
            assert merge_s['__key__'] == s['__key__'], f"sample keys don't match: {merge_s['__key__']}, {s['__key__']} in file {s['__url__']}"
            news = {}
            news.update(merge_s)
            news.update(s)
            yield news
    return merge_loop

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 10
def derived_dataset(kind, key='audio'):
    def deriver(url):
        url = str(Path(url).parent/(Path(url).name.replace(key, kind) + ".gz"))
        return wds.WebDataset(
            wds.SimpleShardList([url])
        ).decode()
    return deriver

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 17
def add_masks(samples):
    for s in samples:
        seconds = s['tend'] - s['tstart']
        # a mask (downsampled to the Whisper encoder token rate of 50/s) is used
        # to teach the model the concept of padding
        # this let's us decode shorter sequences later
        mask = torch.zeros(30*16000//320, dtype=torch.bool)
        mask[:int(seconds * 16000) // 320] = 1
        s['mask'] = mask
        yield s

def tokenize_text(samples, ttoks_size=200, model="base.en", language="en"):
    multilingual = not model.endswith(".en")
    tokenizer = whisper.tokenizer.get_tokenizer(multilingual, language=language, task="transcribe")
    for s in samples:
        ttoks = tokenizer.encode(s['txt'])
        tokens = list(tokenizer.sot_sequence) + ttoks
        rpad = ttoks_size - len(tokens)
        s['in_ttoks'] = F.pad(torch.tensor(tokens), (0, rpad), value=tokenizer.eot)
        s['out_ttoks'] = F.pad(torch.tensor(tokens[1:] + [tokenizer.eot]), (0, rpad), value=-100)
        yield s

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 22
def load_dataset(
        shard_spec:str,
        proc_dataset_path:Path, # processed VAD and txt files
        samples:int,            # set the per-GPU sample count
        txt_label:str="base.en-txt", # the label of the files containing transcriptions
        model:str="base.en",
        key:str="flac",
        language:str=None,
        validation:bool=False,    
    ):
    from . import wh_transcribe
    shards = utils.shard_glob(shard_spec)
    
    if not language and model.endswith('en'): language = 'en'
    assert language, "please provide the dataset language for multilang models"
    
    same_on_all_nodes = lambda urls: urls # will only be used for validation
    ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose(
        wds.decode(wds.torch_audio),
        wds.select(lambda x: 'wav' in x or 'flac' in x or 'mp3' in x or 'ogg' in x), # skip samples without audio
        wds.rename(audio="flac;mp3;wav;ogg"),
        merge_in(derived_dataset(proc_dataset_path, 'vad', key=key)),
        wds.map_dict(**{"vad.npy":wh_transcribe.chunk_merger}),
        wh_transcribe.split_to_chunks,
        utils.resampler(16000, 'samples_16k'),
        merge_in(derived_dataset(proc_dataset_path, txt_label, key=key)),
    )
    if 'librilight' in shards[0]:
        ds = ds.compose(
            # drop the first and last segment because they tend to be inaccurate
            # (the transcriptions don't have the "LibriVox" headers and "end of chapter" suffixes)
            wds.select(lambda x: x['i'] != 0 and x['i'] != x['imax']),
        )
    ds = ds.compose(
        add_masks,
        lambda x: tokenize_text(x, model=model, language=language),
        wds.to_tuple('samples_16k', 'mask', 'in_ttoks', 'out_ttoks'),
        wds.batched(32),
    )
    ds.total_samples = samples
    
    return ds

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 28
from whisperspeech.train import *
from whisperspeech.modules import *

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 29
import dataclasses

def rand(start, end):
    return random.random() * (end - start) + start

def logrand(start, end):
    return 10**rand(math.log10(start), math.log10(end))

@dataclasses.dataclass
class Tunables:
    init_std :float = 1.5
    embeddings_std :float = 4.5e-2
    embeddings_lr_scale: float = 1
    output_mult :float = 1
    query_mult :float = 2
    rope :bool = True
    mask_embs :bool = True # force embeddings corresponding to the input audio padding to a constant value
    downsample_conv: bool = False
    downsample_mean: bool = True
        
    codebook_dim: int = 32
    codebook_decay: float = 0.9
    
    lr0 :float = .9e-3
    clip_gradient_norm :float = 2
    weight_decay :float = 1e-3
    warmup_steps :float = 850

    random :bool = False

    def __post_init__(self):
        # randomize the hyperparams if requested
        if self.random:
            self.init_std = logrand(1, 2)
            self.embeddings_std = logrand(3e-2,6e-2)
            self.embeddings_lr_scale = 2**rand(0,3)
            self.output_mult = 2**rand(-3,3)
            self.query_mult = logrand(1,8)
            self.codebook_dim = int(logrand(30,50))
            self.codebook_decay = logrand(0.86,0.95)
            self.rope = True
            self.mask_embs = True
            self.downsample_mean = True
            
            self.lr0 = logrand(.8e-3,1e-3)
            self.clip_gradient_norm = 10**rand(-1,1)
            self.warmup_steps = logrand(700,1000)
            
    @staticmethod
    def upgrade(args):
        args = {k:v for k,v in args.items()}
        def old_default(name, value):
            if name not in args: args[name] = value
        old_default('output_mult', 1)
        old_default('query_mult', 1)
        old_default('rope', False)
        old_default('mask_embs', False)
        old_default('downsample_conv', False)
        old_default('downsample_mean', False)
        if 'encoder_depth_ratio' in args: del args['encoder_depth_ratio']
        if 'vq_codes' in args: del args['vq_codes']
        return args

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 30
import math

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 31
class RQBottleneckTransformer(nn.Module):
    def __init__(self, vq_codes=512, q_depth=12, depth=1, n_head=2, head_width=64, ffn_mult=4,
                 codebook_dim=2, threshold_ema_dead_code=2, use_cosine_sim = False, kl_loss_mul=1,
                 downsample=1,
                 whisper_model_name='tiny.en', tunables=Tunables()):
        super().__init__()
        width = n_head * head_width
        store_attr("codebook_dim,vq_codes,q_depth,n_head,head_width,ffn_mult,depth,use_cosine_sim,downsample,whisper_model_name")
        self.width = width
        self.base_width = 3 * head_width
        self.vq_codes = vq_codes
        self.tunables = tunables
        self.stoks_len = 1500//downsample
        self.stoks_per_sec = self.stoks_len//30
        
        qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width)
        
        self.kl_loss_mul = kl_loss_mul
        
        n_mlp = width * ffn_mult
        self.mlp = nn.Sequential(
            nn.Linear(width, n_mlp), nn.GELU(), nn.Linear(n_mlp, width)
        )
        self.mlp_ln = LayerNorm(width)

        if tunables.downsample_conv:
            self.downsample_conv = nn.Conv1d(width, width, kernel_size=3, stride=downsample, padding=1)
        else:
            self.downsample_conv = None
        
        if tunables.mask_embs: vq_codes = vq_codes + 1
        self.rq = ResidualVQ(
            dim = width,
            codebook_size = vq_codes, # codebook size
            decay = tunables.codebook_decay, # the exponential moving average decay, lower means the dictionary will change faster
            commitment_weight = 1.,   # the weight on the commitment loss
            threshold_ema_dead_code = threshold_ema_dead_code,
            use_cosine_sim = use_cosine_sim,
            codebook_dim = codebook_dim,
            num_quantizers= 1,
        )
        
        self.ce_lossf = nn.CrossEntropyLoss(ignore_index=-100)
        self.kl_lossf = nn.KLDivLoss(reduction='batchmean')

        self.positional_embedding = nn.Embedding(1500, width) # FIXME: should be self.stoks_len
        
        self.out_blocks = nn.Sequential(*[
            ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(depth)
        ])
        self.ln_post = LayerNorm(width)
        
        self.whmodel = None

        self.apply(self.init_transformer)
        self.register_buffer('val_true', torch.zeros(1).cuda())
        self.register_buffer('val_total', torch.zeros(1).cuda())
    
    def setup(self, device):
        self.ensure_whisper(device)
    
    def init_transformer(self, m):
        if isinstance(m, LinearHead):
            m.no_weight_decay = True
            torch.nn.init.constant_(m.weight, 0)
        elif isinstance(m, QueryHead):
            m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
            torch.nn.init.constant_(m.weight, 0)
        elif isinstance(m, nn.Embedding):
            m.no_weight_decay = True
            m.lr_scale = self.tunables.embeddings_lr_scale
            std = self.tunables.embeddings_std
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
        elif isinstance(m, nn.Linear):
            m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
            std = self.tunables.init_std / m.weight.shape[1]
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
            if m.bias is not None:
                torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
        elif isinstance(m, nn.LayerNorm):
            m.no_weight_decay = True
            torch.nn.init.constant_(m.bias, 0)
            torch.nn.init.constant_(m.weight, 1)

    @property
    def device(self):
        return next(self.parameters()).device
            
    #
    # training
    #
    @torch.no_grad()
    def extract_teacher(self, samples, input_toks, output_toks):
        embs = self.whmodel[0].encoder(whisper.log_mel_spectrogram(samples))
        teacher_logits = self.whmodel[0].decoder(input_toks, embs)
        # set teacher logits to 0 for padding positions so KLDivLoss ignores them
        teacher_logits[output_toks == -100] = 0
        return embs, teacher_logits
    
    def downsample_embeddings(self, x):
        if self.downsample_conv is not None:
            return x[:,::self.downsample] + self.downsample_conv(x.transpose(-1,-2)).transpose(-2,-1)
        elif self.tunables.downsample_mean:
            bs,slen,depth = x.shape
            return x.reshape(bs,slen//self.downsample,self.downsample,depth).mean(-2)
        else:
            return x[:,::self.downsample]
    
    def forward(self, samples, mask, input_toks, output_toks):
        embs, teacher_logits = self.extract_teacher(samples, input_toks, output_toks)
        
        x = self.downsample_embeddings(embs)
        x = x + self.mlp(self.mlp_ln(x))
        # VQ bottleneck
        quantized, self.indices, self.commit_loss = self.rq(x)
        self.commit_loss = self.commit_loss.mean()

        x = quantized.repeat_interleave(self.downsample, -2)
        project_out = getattr(self.rq, 'project_out', None) or self.rq.layers[0].project_out
        if self.tunables.mask_embs: x[~mask] = project_out(self.rq.layers[0]._codebook.embed[0,self.vq_codes])
        positions = torch.arange(0, x.shape[-2], dtype=torch.long, device=x.device)
        x = x + self.positional_embedding(positions)
        x = self.ln_post(self.out_blocks(x))
        
        logits = self.whmodel[0].decoder(input_toks, x)
        self.ce_loss = self.ce_lossf(logits.view(-1,logits.shape[-1]), output_toks.view(-1))
        self.kl_loss = self.kl_lossf(F.log_softmax(logits, dim=-1), F.softmax(teacher_logits, dim=-1))
        loss = self.ce_loss + self.kl_loss_mul * self.kl_loss + self.commit_loss
        
        if not self.training:
            valid_toks = output_toks != -100
            self.val_true += (logits.argmax(-1)[valid_toks] == output_toks[valid_toks]).float().sum()
            self.val_total += valid_toks.float().sum()

        return x, loss
                
    def get_metrics(self):
        metrics = {
            'acc_0': (self.val_true / self.val_total).item(),
        }
        self.val_true[:] = 0
        self.val_total[:] = 0
        return metrics
    
    #
    # inference
    #
    @classmethod
    def load_model(cls, ref="collabora/spear-tts-pytorch:whisper-vq-stoks-medium-en+pl.model",
                   repo_id=None, filename=None, local_filename=None):
        if repo_id is None and filename is None and local_filename is None:
            if ":" in ref:
                repo_id, filename = ref.split(":", 1)
            else:
                local_filename = ref
        if not local_filename:
            local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
        spec = torch.load(local_filename) 
        vqmodel = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec.get('tunables', {}))))
        vqmodel.load_state_dict(spec['state_dict'])
        vqmodel.eval()
        return vqmodel
    
    def load_checkpoint(self, local_filename):
        spec = torch.load(local_filename, map_location='cpu')
        assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
        state_dict = {k.replace('model.', ''):v
                      for k,v in spec['state_dict'].items()}
        self.load_state_dict(state_dict)
        return self
    
    def save_model(self, fname, store_parameters=True):
        torch.save(dict(config = self.__stored_args__,
                        tunables = dataclasses.asdict(self.tunables),
                        state_dict = self.state_dict() if store_parameters else None), fname)
        
    def ensure_whisper(self, device):
        # the list wrapper is a hack to make sure the whole of Whisper is not sucked into self.parameters()
        if self.whmodel is None: self.whmodel = [whisper.load_model(self.whisper_model_name, device=device)]
        self.decoding_options = whisper.DecodingOptions()
        multilingual = not self.whisper_model_name.endswith('.en')
        self.tokenizer = whisper.tokenizer.get_tokenizer(multilingual)
    
    def quantize(self, embs):
        x = self.downsample_embeddings(embs)
        x = x + self.mlp(self.mlp_ln(x))
        _, stoks, _ = self.rq(x)
        if self.q_depth == 1:
            stoks = stoks.squeeze(-1)
        return stoks

    def dequantize(self, stoks):
        assert self.q_depth == 1
        assert len(stoks.shape) == 1, "batch processing is not supported"
        if isinstance(stoks, np.ndarray): stoks = torch.tensor(stoks)
        # remove padding
        padding = torch.nonzero(stoks == self.vq_codes)
        if padding.any(): stoks = stoks[:padding[0,0]]
        stoks = F.pad(stoks, (0,self.stoks_len - stoks.shape[-1]), value=self.vq_codes if self.tunables.mask_embs else 0)
        x = self.rq.layers[0]._codebook.embed[0,stoks.to(torch.long).view(-1)]
        x = x.repeat_interleave(self.downsample, -2)
        project_out = getattr(self.rq, 'project_out', None) or self.rq.layers[0].project_out
        x = project_out(x).unsqueeze(0)
        positions = torch.arange(0, x.shape[-2], dtype=torch.long, device=x.device)
        x = x + self.positional_embedding(positions)
        return self.ln_post(self.out_blocks(x))

    def encode_audio(self, audio):
        if isinstance(audio, str):
            x, sr = torchaudio.load(audio)
            x = torchaudio.transforms.Resample(sr, 16000)(x)[0]
            audio = x.unsqueeze(0)
        return self.encode_mel(whisper.log_mel_spectrogram(audio).to(self.device))
    
    def encode_mel(self, mel):
        assert len(mel.shape) == 3, "invalid mel spectrogram shape, expect (batch,chn,time)"
        self.ensure_whisper(self.device)
        n = mel.shape[-1]
        if n > whisper.audio.N_FRAMES:
            padding = 0
            padded = mel[:,:,:whisper.audio.N_FRAMES]
        else:
            padding = -n % whisper.audio.N_FRAMES
            padded = F.pad(mel, (0, padding), value=-1.5)
        embs = self.whmodel[0].encoder(padded)#.to(self.whmodel[0].device))#[:,:n//2]
        stoks = self.quantize(embs)
        if self.tunables.mask_embs:
            return stoks[:,:n//2//self.downsample]
        else:
            return stoks
    
    def decode_text(self, stoks, decoding_options=None):
        self.ensure_whisper(self.device)
        if decoding_options is None: decoding_options = self.decoding_options
        embs = self.dequantize(stoks).to(self.whmodel[0].device)
        return self.whmodel[0].decode(embs, decoding_options)

# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 33
def make_model(size:str, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
    if size == 'base.en-2d-4096c':
        model = RQBottleneckTransformer(codebook_dim=32, vq_codes=4096, q_depth=1, n_head=8, depth=1,
                                        downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
                                        whisper_model_name=size.split("-")[0], tunables=tunables)
        return model
    if size == 'base.en-2d-512c':
        model = RQBottleneckTransformer(codebook_dim=32, vq_codes=512, q_depth=1, n_head=8, depth=1,
                                        downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
                                        whisper_model_name=size.split("-")[0], tunables=tunables)
        return model
    if size == 'base.en-2d-512c-dim64':
        model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=8, depth=1,
                                        downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
                                        whisper_model_name=size.split("-")[0], tunables=tunables)
        return model
    if size == 'base-2d-512c-dim64':
        model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=8, depth=1,
                                        downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
                                        whisper_model_name=size.split("-")[0], tunables=tunables)
        return model
    if size == 'base-2d-1024c-dim64':
        model = RQBottleneckTransformer(codebook_dim=64, vq_codes=1024, q_depth=1, n_head=8, depth=1,
                                        downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
                                        whisper_model_name=size.split("-")[0], tunables=tunables)
        return model
    if size == 'medium-2d-512c-dim64':
        model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=16, depth=1,
                                        downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
                                        whisper_model_name=size.split("-")[0], tunables=tunables)
        return model
    if size == 'medium-2d-1024c-dim64':
        model = RQBottleneckTransformer(codebook_dim=64, vq_codes=1024, q_depth=1, n_head=16, depth=1,
                                        downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
                                        whisper_model_name=size.split("-")[0], tunables=tunables)
        return model
    raise ArgumentError(f"invalid model size: {size}")