Spaces:
Running
on
T4
Running
on
T4
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/5B. Multi-lang text to semantic token modeling.ipynb. | |
# %% auto 0 | |
__all__ = ['load_dataset', 'rand', 'Tunables', 'T2SEmbedding', 'Encoder', 'TSARTransformer', 'make_model'] | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 1 | |
import dataclasses | |
import random | |
import math | |
import itertools | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.profiler import record_function | |
from huggingface_hub import hf_hub_download | |
from fastcore.basics import store_attr | |
from fastprogress import progress_bar | |
from pathlib import Path | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 2 | |
from whisperspeech.modules import * | |
from whisperspeech import languages | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 6 | |
import re | |
class CharTokenizer: | |
"""Trivial tokenizer – just use UTF-8 bytes""" | |
eot = 0 | |
def encode(self, txt): | |
return list(bytes(txt.strip(), 'utf-8')) | |
def decode(self, tokens): | |
return bytes(tokens).decode('utf-8') | |
def tokenizer(ikey, okey, length): | |
"""Tokenizes a transcript""" | |
tok = CharTokenizer() | |
def _tokenizer(samples): | |
for s in samples: | |
toks = torch.tensor(tok.encode(s[ikey])) | |
s[okey] = F.pad(toks, (0, length - toks.shape[-1]), value=tok.eot) | |
yield s | |
return _tokenizer | |
def ar_padder(ikey, okey, length, pad_token): | |
"""Pads the tokens for autoregresive training""" | |
import numpy as np | |
def _ar_padder(samples): | |
for s in samples: | |
toks = s[ikey] | |
if isinstance(toks, (list, np.ndarray)): toks = torch.tensor(toks) | |
toks = toks.to(torch.long) | |
s['in_' +okey] = F.pad(toks, (1, length - toks.shape[-1] - 1), value=pad_token) | |
s['out_'+okey] = F.pad(toks, (0, length - toks.shape[-1]), value=pad_token) | |
yield s | |
return _ar_padder | |
def char_per_seconder(txt_key, stoks_key, cps_key, stoks_per_second=25): | |
"""Adds the characters per second metric to the input data""" | |
def _char_per_seconder(samples): | |
for s in samples: | |
secs = s[stoks_key].shape[-1] / stoks_per_second | |
s[cps_key] = len(s[txt_key]) / secs | |
yield s | |
return _char_per_seconder | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 7 | |
def load_dataset( | |
txt_shard_spec:str, # transcription webdataset shards | |
stoks_shard_dir:str, # stoks webdataset base dir | |
samples:int, # samples per epoch | |
txt_kind:str='small.en-txt', | |
vq_codes:int=4096, | |
language:str='en', | |
weight:float=1, | |
validation:bool=False, | |
exclude_files:str=None, | |
): | |
import webdataset as wds | |
from whisperspeech import utils | |
shards = utils.shard_glob(txt_shard_spec) | |
excludes = {x for file in exclude_files.split() for x in utils.readlines(file)} if exclude_files else set() | |
language = languages.to_id(language) | |
def set_language(x): | |
x['language'] = language | |
return x | |
same_on_all_nodes = lambda urls: urls # will only be used for validation | |
ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose( | |
wds.decode(), | |
utils.merge_in(utils.derived_dataset('eqvad-stoks', base=txt_kind, suffix='', dir=stoks_shard_dir)), | |
# discard validation samples, select samples > .5s | |
wds.select(lambda s: s['__key__'] not in excludes and s['stoks.npy'].shape[-1] > 12), | |
tokenizer('txt', 'ttoks', length=550), | |
ar_padder('stoks.npy', 'stoks', length=750, pad_token=vq_codes-1), | |
ar_padder('ttoks', 'ttoks', length=550, pad_token=CharTokenizer.eot), | |
char_per_seconder('txt', 'stoks.npy', 'cps', stoks_per_second=25), | |
wds.map(set_language), | |
wds.to_tuple('in_ttoks', 'out_ttoks', 'language', 'cps', 'in_stoks', 'out_stoks'), | |
wds.shuffle(20000, initial=20000), | |
wds.batched(64) | |
) | |
if validation: | |
ds = ds.slice(samples // 64) | |
ds.total_samples = samples | |
ds.stoks_len = 750 | |
ds.stoks_codes = vq_codes | |
ds.ttoks_len = 550 | |
ds.weight = weight | |
return ds | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 14 | |
def rand(start, end): | |
return random.random() * (end - start) + start | |
class Tunables: | |
init_std :float = 1 | |
embeddings_std :float = .01 | |
embeddings_lr_scale: float = 5 | |
embedding_projector_lr_scale: float = 2.5 | |
output_mult :float = .35 | |
query_mult :float = 1 | |
encoder_depth_ratio :float = 0.25 | |
eot_dropout_p :float = .5 | |
cps_input: bool = True | |
cps_bins: int = 32 | |
lr0 :float = 1.5e-3 | |
clip_gradient_norm :float = .2 | |
weight_decay :float = 1e-1 | |
warmup_steps :float = 4000 | |
random :bool = False | |
def __post_init__(self): | |
# randomize the hyperparams if requested | |
if self.random: | |
self.init_std = 10**rand(-1,1) | |
self.embeddings_std = 10**rand(-3,-.7) | |
self.embeddings_lr_scale = rand(2,6) | |
self.output_mult = rand(0.25,0.65) | |
self.query_mult = 2**rand(-2,3) | |
self.encoder_depth_ratio = 0.25 | |
self.lr0 = rand(1,5)*1e-3 | |
self.clip_gradient_norm = 10**rand(-3,0) | |
self.warmup_steps = 100*(10**rand(1,1.85)) | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 15 | |
class T2SEmbedding(nn.Module): | |
def __init__(self, length=1500, codes=1024, width=384, pos_embs=None, stoks_width=384): | |
super().__init__() | |
self.embedding = FlexEmbeddings(codes, width, special_codes=1, frozen_width=stoks_width) | |
if pos_embs is None: pos_embs = sinusoids(length, width) | |
self.register_buffer("positional_embedding", pos_embs) | |
def forward(self, Stoks, xenc, cps=None, offset=0): | |
Sembs = self.embedding(Stoks) | |
xin = (Sembs + self.positional_embedding[offset : offset + Sembs.shape[1]]).to(xenc.dtype) | |
if cps is not None: xin = xin + cps | |
return xin, offset | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 16 | |
class Encoder(nn.Module): | |
def __init__(self, depth=6, width=384, n_head=6, length=1500, codes=1024, emb_width=384, ffn_mult=4, pos_embs=None, tunables=Tunables()): | |
super().__init__() | |
self.emb_width = emb_width | |
self.embedding = FlexEmbeddings(codes, width, frozen_width=emb_width) | |
if pos_embs is None: pos_embs = sinusoids(length, width) | |
self.register_buffer("positional_embedding", pos_embs) | |
self.layers = nn.ModuleList([ | |
ResidualAttentionBlock(width, n_head, | |
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth) | |
]) | |
self.ln_post = LayerNorm(width) | |
mask = torch.empty(length, length).fill_(-torch.inf).triu_(1) | |
self.register_buffer("mask", mask, persistent=False) | |
def forward(self, Stoks, positions, lang_emb=None): | |
xin = self.embedding(Stoks) | |
if lang_emb is not None: xin += lang_emb | |
# assert xin.shape[1:] == self.positional_embedding.shape, "incorrect semantic token shape" | |
x = (xin + | |
self.positional_embedding[positions]).to(xin.dtype) | |
for l in self.layers: x = l(x, positions, causal=False, mask=self.mask) | |
return self.ln_post(x) | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 17 | |
class TSARTransformer(nn.Module): | |
def __init__(self, depth=6, n_head=6, head_width=64, ffn_mult=4, | |
ttoks_len=200, ttoks_codes=256, ttoks_width=None, | |
stoks_len=1500, stoks_codes=1024, stoks_width=None, | |
tunables=Tunables()): | |
super().__init__() | |
store_attr("depth,n_head,head_width,ffn_mult,stoks_width,ttoks_width,ttoks_len,stoks_len,ttoks_codes,stoks_codes") | |
width = n_head * head_width | |
self.width = width | |
self.base_width = 3 * head_width | |
self.tunables = tunables | |
if self.stoks_width is None: self.stoks_width = self.width | |
if self.ttoks_width is None: self.ttoks_width = self.width | |
self.lang_embeddings = nn.Embedding(len(languages.languages), width) | |
if tunables.cps_input: | |
self.cps_embeddings = nn.Embedding(tunables.cps_bins, self.width) | |
else: | |
self.cps_embeddings = None | |
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio) | |
decoder_depth = depth * 2 - encoder_depth | |
tformer_args = dict(width=width, n_head=n_head, ffn_mult=ffn_mult, tunables=tunables) | |
self.encoder = Encoder(length=ttoks_len, codes=ttoks_codes, emb_width=self.ttoks_width, depth=encoder_depth, **tformer_args) | |
self.embeddings = T2SEmbedding(length=stoks_len, codes=stoks_codes, width=width, stoks_width=self.stoks_width) | |
self.decoder = BaseDecoder( | |
length=stoks_len, | |
depth=decoder_depth, | |
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), | |
width=width, n_head=n_head, ffn_mult=ffn_mult, | |
) | |
self.tokenizer = None | |
self.apply(self.init_transformer) | |
def load_frozen_semantic_embeddings(self, vqmodel): | |
self.embeddings.embedding.set_frozen_embeddings(vqmodel.rq.layers[0]._codebook.embed[0]) | |
def setup(self, device): | |
pass | |
def init_transformer(self, m): | |
if isinstance(m, LinearHead): | |
m.no_weight_decay = True | |
torch.nn.init.constant_(m.weight, 0) | |
elif isinstance(m, QueryHead): | |
m.lr_scale = 1/(m.weight.shape[1] / self.base_width) | |
torch.nn.init.constant_(m.weight, 0) | |
elif isinstance(m, nn.Embedding): | |
m.no_weight_decay = True | |
m.lr_scale = self.tunables.embeddings_lr_scale | |
std = self.tunables.embeddings_std | |
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
elif isinstance(m, EmbeddingProjector): | |
m.lr_scale = self.tunables.embedding_projector_lr_scale | |
std = self.tunables.init_std | |
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
elif isinstance(m, nn.Linear): | |
m.lr_scale = 1/(m.weight.shape[1] / self.base_width) | |
std = self.tunables.init_std / m.weight.shape[1] | |
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
if m.bias is not None: | |
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std) | |
elif isinstance(m, nn.LayerNorm): | |
m.no_weight_decay = True | |
torch.nn.init.constant_(m.bias, 0) | |
torch.nn.init.constant_(m.weight, 1) | |
def _embed_cps(self, cpss): | |
if self.cps_embeddings is None: return None | |
cps_bin = (cpss / 20 * self.tunables.cps_bins).to(torch.long) | |
cps_bin[cps_bin >= self.tunables.cps_bins] = self.tunables.cps_bins-1 | |
return self.cps_embeddings(cps_bin).unsqueeze(1) | |
def run_encoder(self, in_ttoks, languages, cpss): | |
if len(languages.shape) != 3: lang_embs = self.lang_embeddings(languages) | |
else: lang_embs = languages | |
if len(lang_embs.shape) == 2: lang_embs = lang_embs.unsqueeze(1) | |
cps_emb = self._embed_cps(cpss) | |
with record_function("encoder"): | |
positions = torch.arange(0, in_ttoks.shape[1], device=in_ttoks.device) | |
xenc = self.encoder(in_ttoks.to(torch.long), positions, lang_emb=lang_embs) | |
return xenc, positions, cps_emb | |
def forward(self, in_ttoks, out_ttoks, languages, cpss, in_stoks, in_stoks_positions, out_stoks=None, loss=True, offset=None, xenc=None, xenc_positions=None, cps_emb=None): | |
if xenc is None: | |
xenc, cps_emb = self.run_encoder(in_ttoks, languages, cpss) | |
with record_function("decoder"): | |
x = (self.embeddings.embedding(in_stoks) + | |
self.embeddings.positional_embedding[in_stoks_positions] + | |
cps_emb).to(xenc[0].dtype) | |
x = self.decoder(x, in_stoks_positions, xenc, xenc_positions) | |
logits = self.embeddings.embedding.unembed(x) | |
logits = logits * self.tunables.output_mult / (self.width / self.base_width) | |
if loss is not None: | |
enc_logits = self.encoder.embedding.unembed(xenc[0]) | |
enc_logits = enc_logits * self.tunables.output_mult / (self.width / self.base_width) | |
with record_function("loss"): | |
loss = F.cross_entropy(logits.transpose(-1,-2), out_stoks) | |
if self.training: | |
loss += 0.1 * F.cross_entropy(enc_logits.transpose(-1,-2), out_ttoks) | |
return logits, loss | |
# | |
# inference | |
# | |
def load_model(cls, ref="collabora/whisperspeech:t2s-small-en+pl.model", | |
repo_id=None, filename=None, local_filename=None): | |
if repo_id is None and filename is None and local_filename is None: | |
if ":" in ref: | |
repo_id, filename = ref.split(":", 1) | |
else: | |
local_filename = ref | |
if not local_filename: | |
local_filename = hf_hub_download(repo_id=repo_id, filename=filename) | |
spec = torch.load(local_filename) | |
model = cls(**spec['config'], tunables=Tunables(**spec['tunables'])) | |
model.load_state_dict(spec['state_dict']) | |
model.eval() | |
return model | |
def load_checkpoint(self, local_filename): | |
spec = torch.load(local_filename, map_location='cpu') | |
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint' | |
state_dict = {k.replace('model.', ''):v | |
for k,v in spec['state_dict'].items()} | |
self.load_state_dict(state_dict) | |
return self | |
def save_model(self, fname): | |
torch.save(dict(config = self.__stored_args__, | |
tunables = dataclasses.asdict(self.tunables), | |
state_dict = self.state_dict()), fname) | |
def ensure_tokenizer(self): | |
assert not self.training | |
if self.tokenizer is None: self.tokenizer = CharTokenizer() | |
def switch_dtypes(self, dtype=torch.float16): | |
self.dtype = dtype | |
for n,m in self.named_modules(): | |
# convert every leaf layer apart from the LayerNorms | |
if isinstance(m, (nn.Linear, nn.Embedding)): | |
m.to(dtype) | |
# take care of buffers ([kv]_cache, masks) that are not in the leaf layers | |
for bn,b in m.named_buffers(recurse=False): | |
setattr(m,bn,b.to(dtype)) | |
def optimize(self, max_batch_size=1, dtype=torch.float16, torch_compile=True): | |
for emb in [self.embeddings.embedding, self.embeddings.embedding]: | |
emb.convert_for_eval() | |
for l in self.encoder.layers: | |
l.attn.convert_for_eval() | |
for l in self.decoder.layers: | |
l.attn.convert_for_eval() | |
l.cross_attn.convert_for_eval() | |
l.setup_kv_cache(max_batch_size, self.stoks_len, self.ttoks_len) | |
self.switch_dtypes(dtype) | |
if torch_compile: | |
self.generate_next = torch.compile(self.generate_next, mode="reduce-overhead", fullgraph=True) | |
def device(self): | |
return next(self.parameters()).device | |
# from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py | |
def multinomial_sample_one_no_sync(self, probs_sort): # Does multinomial sampling without a cuda synchronization | |
q = torch.empty_like(probs_sort).exponential_(1) | |
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
def logits_to_probs(self, logits, T=1.0, top_k=None): | |
logits = logits / max(T, 1e-5) | |
logits[self.embeddings.embedding.codes:] = -torch.inf | |
if top_k is not None: | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
pivot = v.select(-1, -1).unsqueeze(-1) | |
logits = torch.where(logits < pivot, -float("Inf"), logits) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
return probs | |
def sample(self, logits, T=1.0, top_k=None): | |
probs = self.logits_to_probs(logits[0,-1], T, top_k) | |
idx_next = self.multinomial_sample_one_no_sync(probs) | |
return idx_next | |
def generate_one(self, toks, toks_positions, cps_emb, xenc, xenc_positions, T, top_k): | |
probs, _ = self(None, None, None, None, toks, toks_positions, loss=None, xenc=xenc, xenc_positions=xenc_positions, cps_emb=cps_emb) | |
return self.sample(probs, T, top_k) | |
def generate_next(self, *args, **kwargs): | |
return self.generate_one(*args, **kwargs) | |
def prep(self, txt, cps=15, lang="en"): | |
dev = self.device | |
ttoks = torch.tensor(self.tokenizer.encode(txt), device=dev) | |
ttoks = F.pad(ttoks, (0, self.ttoks_len - len(ttoks)), value=self.tokenizer.eot).unsqueeze(0) | |
cpss = torch.tensor([cps], device=dev) | |
langs = torch.tensor([languages.to_id(lang)], device=dev) | |
return ttoks, cpss, langs | |
def generate(self, txt, cps=15, lang="en", N=None, T=0.7, top_k=None, step=None, show_progress_bar=True): | |
self.ensure_tokenizer() | |
N = N or self.stoks_len | |
dev = self.device | |
ttoks = [] | |
langs = [] | |
if isinstance(lang, list): | |
lang0 = lang[0] | |
assert isinstance(txt, list), "lang and txt have to be both lists or strings" | |
for txt, lang in zip(txt, lang): | |
tt = self.tokenizer.encode(txt) | |
ttoks += tt | |
langs += [languages.to_id(lang)] * len(tt) | |
elif isinstance(lang, torch.Tensor): | |
langs = lang | |
ttoks = self.tokenizer.encode(txt) | |
else: | |
lang0 = lang | |
ttoks = self.tokenizer.encode(txt) | |
langs = torch.tensor([languages.to_id(lang)], device=dev).unsqueeze(0) | |
ttoks = torch.tensor(ttoks, device=dev) | |
ttoks = F.pad(ttoks, (1, self.ttoks_len - len(ttoks) - 1), value=self.tokenizer.eot).unsqueeze(0) | |
cpss = torch.tensor([cps], device=dev) | |
if not isinstance(langs, torch.Tensor): | |
langs = torch.tensor(langs, device=dev) | |
langs = F.pad(langs, (1, self.ttoks_len - len(langs) - 1), value=languages.to_id(lang0)).unsqueeze(0) | |
it = range(0,N-1) | |
if show_progress_bar: it = progress_bar(it) | |
toks = torch.zeros((1,N), dtype=torch.long, device=dev) | |
toks[:,0] = self.stoks_codes-1 | |
toks_positions = torch.arange(N, device=dev) | |
with record_function("encode"): | |
xenc, xenc_positions, cps_emb = self.run_encoder(ttoks, langs, cpss) | |
toks_positions = torch.arange(N+1, device=dev) | |
# contrary to S2A this model works without prefill and is actually a tiny bit faster | |
# with record_function("prefill"): | |
# toks[0,1] = self.generate_one(toks[:,:1], toks_positions[:1], cps_emb, xenc, xenc_positions, T, top_k) | |
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): | |
for i in it: | |
toks[0,i+1] = self.generate_next(toks[:,i:i+1], toks_positions[i:i+1], cps_emb, xenc, xenc_positions, T, top_k) | |
if i % 25 == 0 and toks[0,i+1] == self.stoks_codes-1: return toks[0,:i+1] | |
# for profiling, debugging or early exit | |
if step is not None: step() | |
return toks[0,:] | |
def generate_batch(self, txts, N=None, T=1.1, top_k=7, show_progress_bar=True): | |
self.ensure_tokenizer() | |
N = self.stoks_len | |
dev = self.device | |
ttoks = [] | |
for txt in txts: | |
ttoks_ = torch.tensor(self.tokenizer.encode(txt), device=dev) | |
ttoks_ = F.pad(ttoks_, (0, self.ttoks_len - len(ttoks_)), value=self.tokenizer.eot).unsqueeze(0) | |
ttoks.append(ttoks_) | |
ttoks = torch.cat(ttoks, dim=0) | |
toks = torch.zeros((len(ttoks),N), dtype=torch.long, device=dev) | |
it = range(N) | |
if show_progress_bar: it = progress_bar(it) | |
for i in it: | |
p, _ = self(ttoks, toks[:,:i], loss=None) | |
last_p = p[:,-1] | |
if top_k: | |
last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf | |
tok = torch.multinomial((last_p / float(T)).softmax(-1), 1) | |
toks[:,i] = tok[:,0] | |
if (toks[:,i] == self.stoks_codes-1).all(): return toks[:,:i] | |
return toks | |
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 18 | |
def _make_model(size:str, tunables:Tunables=Tunables(), dataset=None, **kwargs): | |
kwargs = dict(stoks_len = dataset.stoks_len, ttoks_len = dataset.ttoks_len, tunables=tunables, **kwargs) | |
if 'stoks_codes' not in kwargs: kwargs['stoks_codes'] = dataset.stoks_codes | |
if size == 'micro': | |
return TSARTransformer(depth=2, n_head=3, ffn_mult=1, **kwargs) | |
if size == 'tiny': | |
return TSARTransformer(depth=4, n_head=6, **kwargs) | |
if size == 'base': | |
return TSARTransformer(depth=6, n_head=8, **kwargs) | |
if size == 'small': | |
return TSARTransformer(depth=12, n_head=12, **kwargs) | |
if size == 'small+': | |
return TSARTransformer(depth=12, n_head=16, **kwargs) | |
if size == 'medium': | |
return TSARTransformer(depth=24, n_head=16, **kwargs) | |
def make_model(size:str, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None): | |
from whisperspeech import vq_stoks | |
if frozen_embeddings_model: | |
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model) | |
model = _make_model(size, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1]) | |
model.load_frozen_semantic_embeddings(vqmodel) | |
else: | |
model = _make_model(size, tunables, dataset, mode=mode) | |
return model | |