Spaces:
Running
on
T4
Running
on
T4
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/1. Acoustic token extraction.ipynb. | |
# %% auto 0 | |
__all__ = ['load', 'load_model', 'extract_Atoks', 'extract_acoustic'] | |
# %% ../nbs/1. Acoustic token extraction.ipynb 2 | |
import torch | |
import torchaudio | |
import gc | |
from pathlib import Path | |
from fastcore.script import * | |
from fastprogress import progress_bar, master_bar | |
# %% ../nbs/1. Acoustic token extraction.ipynb 5 | |
def load(fname, newsr=24000): | |
"""Load an audio file to the GPU and resample to `newsr`.""" | |
x, sr = torchaudio.load(fname) | |
_tform = torchaudio.transforms.Resample(sr, newsr) | |
return _tform(x).cuda().unsqueeze(0) | |
# %% ../nbs/1. Acoustic token extraction.ipynb 6 | |
def load_model(): | |
"Load the pretrained EnCodec model" | |
from encodec.model import EncodecModel | |
model = EncodecModel.encodec_model_24khz() | |
model.set_target_bandwidth(1.5) | |
model.cuda().eval(); | |
return model | |
# %% ../nbs/1. Acoustic token extraction.ipynb 7 | |
def extract_Atoks(model, audio): | |
"""Extract EnCodec tokens for the given `audio` tensor (or file path) | |
using the given `model` (see `load_model`).""" | |
if isinstance(audio, (Path, str)): | |
audio = load(audio) | |
with torch.no_grad(): | |
frames = torch.cat([model.encode(segment)[0][0] | |
for segment in torch.split(audio, 320*20000, dim=-1)], dim=-1) | |
return frames | |
# %% ../nbs/1. Acoustic token extraction.ipynb 8 | |
def extract_acoustic( | |
srcdir:Path, # source dir, should contain *.flac files | |
outdir:Path, # output dir, will get the *.encodec files | |
): | |
"Convert audio files to .encodec files with tensors of tokens" | |
model = load_model() | |
outdir.mkdir(exist_ok=True, parents=True) | |
for name in progress_bar(list(srcdir.rglob('*.flac'))): | |
outname = outdir/name.with_suffix('.encodec').name | |
tokens = extract_Atoks(model, name) | |
torch.save(tokens, outname) | |
del tokens | |
gc.collect() | |