Spaces:
Running
on
T4
Running
on
T4
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb. | |
# %% auto 0 | |
__all__ = ['load_dataset', 'DelSumEmbedding', 'DelSumHead', 'rand', 'Tunables', 'SADelARTransformer'] | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 1 | |
import io | |
import time | |
import math | |
import random | |
import dataclasses | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 2 | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from torch.profiler import profile, record_function, ProfilerActivity, schedule | |
from fastcore.basics import store_attr | |
from huggingface_hub import hf_hub_download | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 3 | |
from pathlib import Path | |
import json | |
from fastprogress import progress_bar, master_bar | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 4 | |
from .modules import * | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 8 | |
def rand(start, end): | |
return random.random() * (end - start) + start | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 9 | |
def random_trunc(random_trunc_p, atoks_len = 2250, stoks_len = 750): | |
atoks_per_second = atoks_len / 30 | |
def _trunc(samples): | |
for s in samples: | |
if random.random() < random_trunc_p: | |
seconds = rand(0.3, 30) | |
s['atoks.npy'] = s['atoks.npy'][:,:math.ceil(seconds * atoks_per_second)] | |
s['stoks.npy'] = s['stoks.npy'][:math.ceil(s['atoks.npy'].shape[-1]/atoks_len*stoks_len)] | |
yield s | |
return _trunc | |
def pad_samples(atoks_len = 2250, stoks_len = 750, stoks_pad_token = 4096): | |
def _pad(samples): | |
for s in samples: | |
s['stoks.npy'] = F.pad(torch.tensor(s['stoks.npy']), (1, stoks_len - s['stoks.npy'].shape[-1]-1), value=stoks_pad_token) | |
s['out_stoks'] = F.pad(torch.tensor(s['stoks.npy']), (0, stoks_len - s['stoks.npy'].shape[-1]), value=stoks_pad_token) | |
s['atoks.npy'] = F.pad(torch.tensor(s['atoks.npy']), (0, atoks_len - s['atoks.npy'].shape[-1]), value=-100) | |
yield s | |
return _pad | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 10 | |
def make_speaker_map(shards): | |
speakers = set() | |
for shard in shards: | |
with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines())) | |
return {id:i for i,id in enumerate(sorted(speakers))} | |
def speaker_id_extractor(speaker_map): | |
def _extractor(samples): | |
for s in samples: | |
s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]]) | |
yield s | |
return _extractor | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 27 | |
def load_dataset( | |
atoks_shard_spec:str, # webdataset folder | |
stoks_shard_dir:str, # stoks webdataset base dir | |
samples:int, # samples per epoch | |
random_trunc_p:float=0,# probability of truncating the input to less than 30 seconds | |
vq_codes:int=4096, | |
language:str='en', | |
weight:float=1, | |
validation:bool=False, | |
exclude_files:str=None, | |
randomize_speakers:bool=False, | |
): | |
import webdataset as wds | |
from whisperspeech import utils | |
shards = utils.shard_glob(atoks_shard_spec) | |
excludes = {x for file in exclude_files.split() for x in utils.readlines(file)} if exclude_files else set() | |
def check_for_nan(s): | |
if torch.tensor(s['spk_emb.npy']).isnan().any(): print("found NaN:", s['__key__']) | |
return s | |
def set_language(x): | |
x['language'] = language | |
return x | |
same_on_all_nodes = lambda urls: urls # will only be used for validation | |
ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose( | |
wds.decode(), | |
utils.merge_in(utils.derived_dataset('maxvad-stoks', base='atoks-3kbps', suffix='', dir=stoks_shard_dir)), | |
wds.map(check_for_nan), | |
wds.select(lambda s: s['__key__'] not in excludes), | |
wds.map_dict(**{'spk_emb.npy':np.nan_to_num}), # remove nans from the speaker embedding model | |
random_trunc(random_trunc_p) if random_trunc_p > 0 else lambda x: x, | |
pad_samples(stoks_pad_token=vq_codes-1), | |
wds.map(set_language), | |
wds.to_tuple('stoks.npy', 'atoks.npy', 'spk_emb.npy', 'language', 'out_stoks'), | |
wds.shuffle(20000, initial=20000), | |
wds.batched(64), | |
) | |
if randomize_speakers: | |
rng = np.random.default_rng() | |
ds = ds.compose( | |
wds.map_tuple(None, None, lambda x: rng.permutation(x), None), | |
) | |
if validation: | |
ds = ds.slice(samples // 64) | |
ds.total_samples = samples | |
ds.weight = weight | |
return ds | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 37 | |
class DelSumEmbedding(nn.Module): | |
def __init__(self, n_head=6, head_width=64, atoks_width=None, length=2250, codes=1024, quantizers=8, pos_embs=None): | |
super().__init__() | |
self.length = length | |
width = n_head * head_width | |
if atoks_width is None: atoks_width = width | |
self.width = width | |
self.quantizers = quantizers | |
emb = None | |
embs = [] | |
for _ in range(quantizers): | |
emb = FlexEmbeddings(codes, width, special_codes=2, frozen_width=atoks_width, | |
special_embedding=emb and emb.special) | |
embs.append(emb) | |
self.embeddings = nn.ModuleList(embs) | |
if pos_embs is not None: | |
self.register_buffer("positional_embedding", pos_embs) | |
def forward(self, toks, xenc): | |
with record_function("embeddings"): | |
b,_,n = toks.shape | |
newn = min(n, self.length) | |
embs = torch.zeros((b,newn,self.width), dtype=xenc.dtype, device=xenc.device) | |
for i in range(self.quantizers): | |
embs[:, :] += self.embeddings[i](toks[:,i,:]) | |
x = embs.to(xenc.dtype) | |
return x | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 38 | |
class DelSumHead(nn.Module): | |
def __init__(self, quantizers=8, n_head=6, head_width=64): | |
super().__init__() | |
self.width = n_head * head_width | |
self.quantizers = quantizers | |
self.splitter = nn.Sequential( | |
nn.Linear(self.width, self.width * quantizers), | |
nn.GELU(), | |
) | |
def forward(self, x, embeddings=None): | |
b, newn, _ = x.shape | |
with record_function("splitter"): | |
split = self.splitter(x).view(b,newn,self.quantizers,self.width) | |
with record_function("unembed"): | |
logits = torch.stack([embeddings[q].unembed(split[:,:,q]) for q in range(self.quantizers)], dim=1) | |
return logits | |
def rand(start, end): | |
return random.random() * (end - start) + start | |
class Tunables: | |
init_std :float = 9 | |
embeddings_std :float = 0.2 | |
embeddings_lr_scale: float = 10 | |
output_mult :float = 5.6 | |
# FIXME: try separate mults for self and cross attention | |
query_mult :float = .3 | |
encoder_depth_ratio :float = 0.25 | |
linear_heads :bool = False | |
rope :bool = True | |
lr0 :float = 3e-3 | |
clip_gradient_norm :float = 2 | |
weight_decay :float = 1e-3 | |
warmup_steps :float = 2000 | |
random :bool = False | |
def __post_init__(self): | |
# randomize the hyperparams if requested | |
if self.random: | |
self.init_std = 2*10**rand(0,1) | |
self.embeddings_std = 10**rand(-1.7,-0.22) | |
self.embeddings_lr_scale = 2**rand(2,4) | |
self.output_mult = 2**rand(1.5,3) | |
self.query_mult = 2**rand(-3,-1.3) | |
self.encoder_depth_ratio = random.choice([0.25,0.5]) | |
self.linear_heads = False | |
self.rope = True | |
self.lr0 = 3e-3 | |
self.clip_gradient_norm = 10**rand(-1,1) | |
self.warmup_steps = 100*(10**rand(1.18,1.3)) | |
def upgrade(args): | |
args = {k:v for k,v in args.items()} | |
def old_default(name, value): | |
if name not in args: args[name] = value | |
old_default('rope', False) | |
old_default('linear_heads', True) | |
return args | |
class SADelARTransformer(nn.Module): | |
def __init__(self, depth=3, ctx_n=2250, | |
stoks_len=750, stoks_codes=4097, stoks_width=None, | |
spk_width=None, | |
atoks_width=None, | |
n_head=3, head_width=64, ffn_mult=4, | |
quantizers=8, speaker_map={"1":0}, tunables=Tunables()): | |
super().__init__() | |
self.quantizers = quantizers | |
self.codes = 1024 | |
width = n_head * head_width | |
store_attr("depth,ctx_n,stoks_len,stoks_codes,stoks_width,spk_width,atoks_width,n_head,head_width,ffn_mult,quantizers,speaker_map") | |
self.width = width | |
self.base_width = 3 * head_width | |
self.tunables = tunables | |
if stoks_width is None: stoks_width = width | |
if spk_width is None: spk_width = width | |
self.emb_factor = width != stoks_width | |
self.spk_factor = width != spk_width | |
if tunables.rope: | |
self.positional_embeddings = None | |
else: | |
self.register_buffer('positional_embeddings', sinusoids(ctx_n, width)) | |
# self.speaker_embedding = nn.Embedding(len(speaker_map), spk_width) | |
self.semantic_embedding = nn.Embedding(stoks_codes, stoks_width) | |
if self.emb_factor: | |
self.emb_to_hidden = nn.Linear(stoks_width, width) | |
self.hidden_to_emb = nn.Linear(width, stoks_width) | |
if self.spk_factor: | |
self.spk_to_hidden = nn.Linear(spk_width, width) | |
qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width) | |
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio) | |
decoder_depth = depth * 2 - encoder_depth | |
self.encoder = nn.Sequential(*[ | |
ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(encoder_depth) | |
]) # FIXME: enclm requires causal attention here | |
self.ln_post = LayerNorm(width) | |
self.embds = DelSumEmbedding( | |
pos_embs=self.positional_embeddings, length=ctx_n, | |
n_head=n_head, head_width=head_width, atoks_width=atoks_width, | |
quantizers=quantizers, | |
) | |
self.decoder = BaseDecoder(qk_scale=qk_scale, length=ctx_n, | |
n_head=n_head, width=n_head * head_width, | |
ffn_mult=ffn_mult, depth=decoder_depth, | |
rope=tunables.rope) | |
self.head = DelSumHead(n_head=n_head, head_width=head_width, quantizers=quantizers) | |
for l in self.decoder.layers: | |
l.cross_attn.key_subsampling = 3 | |
# for l in self.encoder: | |
# l.attn.key_subsampling = 3 | |
# l.attn.query_subsampling = 3 | |
self.register_buffer('val_true', torch.zeros(self.quantizers).cuda()) | |
self.register_buffer('val_total', torch.zeros(self.quantizers).cuda()) | |
self.apply(self.init_transformer) | |
def setup(self, device): | |
pass | |
def load_frozen_semantic_embeddings(self, vqmodel): | |
with torch.no_grad(): | |
self.semantic_embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0] | |
self.semantic_embedding.lr_scale = 0 | |
def load_frozen_acoustic_embeddings(self, amodel): | |
for i in range(self.quantizers): | |
self.decoder.embeddings[i].set_frozen_embeddings(amodel.quantizer.vq.layers[i].codebook) | |
def init_transformer(self, m): | |
if isinstance(m, LinearHead): | |
m.no_weight_decay = True | |
torch.nn.init.constant_(m.weight, 0) | |
elif isinstance(m, QueryHead): | |
m.lr_scale = 1/(m.weight.shape[1] / self.base_width) | |
torch.nn.init.constant_(m.weight, 0) | |
elif isinstance(m, nn.Embedding): | |
m.no_weight_decay = True | |
m.lr_scale = self.tunables.embeddings_lr_scale | |
std = self.tunables.embeddings_std | |
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
# elif isinstance(m, EmbeddingProjector): | |
# m.lr_scale = self.tunables.embeddings_lr_scale #1/(m.weight.shape[1] / self.base_width) | |
# m.lr_scale = 2/(m.weight.shape[1] / self.base_width) | |
# std = self.tunables.init_std / m.weight.shape[1] | |
# torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
elif isinstance(m, nn.Linear): | |
m.lr_scale = 1/(m.weight.shape[1] / self.base_width) | |
std = self.tunables.init_std / m.weight.shape[1] | |
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
if m.bias is not None: | |
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std) | |
elif isinstance(m, nn.LayerNorm): | |
m.no_weight_decay = True | |
torch.nn.init.constant_(m.bias, 0) | |
torch.nn.init.constant_(m.weight, 1) | |
def embed_stoks(self, Stoks): | |
b,n = Stoks.shape | |
if self.stoks_len == 1500: | |
# converts 50 toks/s to 75 toks/s by adding padding between every two tokens | |
x = Stoks.reshape(b,n//2,2) | |
x = x.repeat_interleave(2, -1)[:,:,:3] | |
x[:,:,1] = 1024 | |
x = x.reshape(b,n//2*3) | |
else: | |
# it's a lot easier with 25 toks/s | |
# x = Stoks.repeat_interleave(3, -1) | |
x = Stoks | |
# embed semantic tokens | |
Sembs = self.semantic_embedding(x.to(torch.long)) | |
if self.emb_factor: | |
Sembs = self.emb_to_hidden(Sembs) | |
return Sembs | |
def _encoder(self, semb, positions): | |
x = semb | |
for l in self.encoder: x = l(x, positions) | |
return self.ln_post(x) | |
def run_encoder(self, Stoks, speakers): | |
semb = self.embed_stoks(Stoks) | |
with record_function("encoder"): | |
if self.positional_embeddings is not None: semb = semb + self.positional_embeddings | |
positions = torch.arange(0, semb.shape[1], device=semb.device) | |
xenc = self._encoder(semb, positions) | |
if self.training: | |
enc_logits = (self.hidden_to_emb(xenc) @ self.semantic_embedding.weight.to(xenc.dtype).T).float() | |
enc_logits = enc_logits * self.tunables.output_mult / (self.width / self.base_width) | |
else: | |
enc_logits = None | |
# print(xenc.shape, speakers.shape) | |
spk_embs = F.normalize(speakers, dim=-1) # use extracted embeddings | |
if self.spk_factor: spk_embs = self.spk_to_hidden(spk_embs) | |
return xenc + spk_embs.unsqueeze(1), positions, enc_logits | |
def forward(self, Stoks, Atoks, speakers, langs=None, out_stoks=None, noloss=False, xenc=None, xenc_positions=None, atoks_positions=None): | |
if xenc is None: | |
Atoks = Atoks.to(torch.long) | |
out_stoks = out_stoks.to(torch.long) | |
Atoks_gt = Atoks.clone() | |
Atoks_gt[Atoks == -100] = 1024 | |
xenc, enc_logits = self.run_encoder(Stoks, speakers) | |
else: | |
Atoks_gt = Atoks | |
with record_function("decoder"): | |
embs = self.embds(Atoks, xenc) | |
if atoks_positions is None: atoks_positions = torch.arange(0, embs.shape[1], device=embs.device) | |
x = self.decoder(embs, atoks_positions, xenc, xenc_positions) | |
logits = self.head(x, embeddings=self.embds.embeddings) | |
logits *= self.tunables.output_mult / (self.width / self.base_width) | |
if noloss: | |
return logits | |
with record_function("loss"): | |
N = Atoks.shape[-1] | |
loss = 0 | |
for i in range(self.quantizers): | |
loss += F.cross_entropy(logits[:,i,i:].reshape(-1,logits.shape[-1]), Atoks[:,i,:N-i].reshape(-1)) | |
if self.training and i == 0: | |
loss *= 5 | |
loss /= self.quantizers | |
if self.training: | |
loss += 0.1 * F.cross_entropy(enc_logits.transpose(-1,-2), out_stoks) | |
if not self.training: | |
for i in range(self.quantizers): | |
Atoks_i = Atoks[:,i,:N-i] | |
valid_Atoks = Atoks_i != -100 | |
self.val_true[i] += (logits[:,i,i:].argmax(-1)[valid_Atoks] == Atoks_i[valid_Atoks]).float().sum() | |
self.val_total[i] += valid_Atoks.float().sum() | |
return logits, loss | |
def get_metrics(self): | |
metrics = { | |
f'acc_{i}':x.item() for i,x in enumerate(self.val_true / self.val_total) | |
} | |
self.val_true[:] = 0 | |
self.val_total[:] = 0 | |
return metrics | |
# | |
# inference | |
# | |
def load_model(cls, ref="collabora/whisperspeech:s2a-q4-small-en+pl.model", | |
repo_id=None, filename=None, local_filename=None): | |
if repo_id is None and filename is None and local_filename is None: | |
if ":" in ref: | |
repo_id, filename = ref.split(":", 1) | |
else: | |
local_filename = ref | |
if not local_filename: | |
local_filename = hf_hub_download(repo_id=repo_id, filename=filename) | |
spec = torch.load(local_filename) | |
if '_extra_state' not in spec['state_dict']: spec['state_dict']['_extra_state'] = { 'speaker_map': spec['config']['speaker_map'] } | |
model = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec['tunables']))) | |
model.load_state_dict(spec['state_dict']) | |
model.eval() | |
return model | |
def get_extra_state(self): | |
return { 'speaker_map': self.speaker_map } | |
def set_extra_state(self, st): | |
self.speaker_map = st['speaker_map'] | |
def load_checkpoint(self, local_filename): | |
spec = torch.load(local_filename, map_location='cpu') | |
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint' | |
state_dict = {k.replace('model.', ''):v | |
for k,v in spec['state_dict'].items()} | |
self.load_state_dict(state_dict) | |
return self | |
def save_model(self, fname): | |
torch.save(dict(config = self.__stored_args__, | |
tunables = dataclasses.asdict(self.tunables), | |
state_dict = self.state_dict()), fname) | |
def switch_dtypes(self, dtype=torch.float16): | |
self.dtype = dtype | |
for n,m in self.named_modules(): | |
# convert every leaf layer apart from the LayerNorms | |
if isinstance(m, (nn.Linear, nn.Embedding)): | |
m.to(dtype) | |
# take care of buffers ([kv]_cache, masks) that are not in the leaf layers | |
for bn,b in m.named_buffers(recurse=False): | |
setattr(m,bn,b.to(dtype)) | |
def optimize(self, max_batch_size=1, dtype=torch.float16, torch_compile=True): | |
for emb in self.embds.embeddings: | |
emb.convert_for_eval() | |
for l in self.encoder: | |
l.attn.convert_for_eval() | |
for l in self.decoder.layers: | |
l.attn.convert_for_eval() | |
l.cross_attn.convert_for_eval() | |
l.setup_kv_cache(max_batch_size, self.ctx_n, self.stoks_len) | |
self.switch_dtypes(dtype) | |
if torch_compile: | |
self.generate_next = torch.compile(self.generate_next, mode="reduce-overhead", fullgraph=True) | |
def device(self): | |
return next(self.parameters()).device | |
# from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py | |
def multinomial_sample_one_no_sync(self, probs_sort): # Does multinomial sampling without a cuda synchronization | |
q = torch.empty_like(probs_sort).exponential_(1) | |
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
def logits_to_probs(self, logits, T=1.0, top_k=None): | |
logits = logits / max(T, 1e-5) | |
if top_k is not None: | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
pivot = v.select(-1, -1).unsqueeze(-1) | |
logits = torch.where(logits < pivot, -float("Inf"), logits) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
return probs | |
def sample(self, logits, T=1.0, top_k=None): | |
probs = self.logits_to_probs(logits[0,:,-1], T, top_k) | |
idx_next = self.multinomial_sample_one_no_sync(probs) | |
return idx_next | |
def generate_one(self, toks, positions, langs, xenc, xenc_positions, T, top_k): | |
probs = self(None, toks, None, langs, noloss=True, xenc=xenc, xenc_positions=xenc_positions, atoks_positions=positions) | |
return self.sample(probs, T, top_k) | |
def generate_next(self, *args, **kwargs): | |
return self.generate_one(*args, **kwargs) | |
def generate(self, stoks, speakers, langs=None, N=None, T=0.7, top_k=None, show_progress_bar=True, step=None, subsample_enc=False): | |
dev = self.device | |
N = N or len(stoks) * 3 | |
stoks = F.pad(stoks.to(dev), (1, self.stoks_len - len(stoks)-1), value=self.stoks_codes-1).unsqueeze(0) | |
speakers = speakers.to(device=dev, dtype=self.dtype) | |
toks = torch.full((1,self.quantizers,2250), self.codes+1, dtype=torch.long, device=dev) | |
it = range(1,min(N,2250-1)) | |
if show_progress_bar: it = progress_bar(it) | |
with record_function("encode"): | |
xenc, xenc_positions, _ = self.run_encoder(stoks, speakers) | |
toks_positions = torch.arange(N, device=dev) | |
with record_function("prefill"): | |
toks[0,0,1] = self.generate_one(toks[:,:,:1], toks_positions[:1], langs, xenc, xenc_positions, T, top_k)[0,0] | |
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): | |
for i in it: | |
with record_function("generate_one"): | |
toks[0,:i+1,i+1] = self.generate_next(toks[:,:,i:i+1], toks_positions[i:i+1], langs, xenc, xenc_positions, T, top_k)[:i+1,0] | |
# for profiling, debugging or early exit | |
if step is not None: step() | |
# shift tokens | |
toks = toks[:,:,1:N] | |
for j in range(self.quantizers): | |
toks[0, j] = torch.roll(toks[0, j], -j) | |
return toks[0] | |
# %% ../nbs/4B. Multi-language semantic to acoustic token modeling.ipynb 39 | |
def _make_model(size:str, quantizers:int=4, tunables:Tunables=Tunables(), **kwargs): | |
kwargs = dict(quantizers=quantizers, tunables=tunables, **kwargs) | |
if size == 'micro': | |
return SADelARTransformer(depth=4, n_head=3, ffn_mult=2, **kwargs) | |
if size == 'tiny-narrow': | |
return SADelARTransformer(depth=4, n_head=6, ffn_mult=1, **kwargs) | |
if size == 'tiny': | |
return SADelARTransformer(depth=4, n_head=6, **kwargs) | |
if size == 'base': | |
return SADelARTransformer(depth=6, n_head=8, **kwargs) | |
if size == 'base-deep': | |
return SADelARTransformer(depth=9, n_head=8, **kwargs) | |
if size == 'base-wide': | |
return SADelARTransformer(depth=6, n_head=12, **kwargs) | |
if size == 'small/2': | |
return SADelARTransformer(depth=9, n_head=12, **kwargs) | |
if size == 'small': | |
return SADelARTransformer(depth=12, n_head=12, **kwargs) | |
if size == 'medium': | |
return SADelARTransformer(depth=24, n_head=16, **kwargs) | |
def make_model(size:str, quantizers:int=4, frozen_embeddings_model:str=None, frozen_acoustic_embeddings:bool=False, spk_width:int=None, tunables:Tunables=Tunables(), dataset=None): | |
from encodec.model import EncodecModel | |
from whisperspeech import vq_stoks | |
amodel = EncodecModel.encodec_model_24khz() if frozen_acoustic_embeddings else None | |
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model) if frozen_embeddings_model else None | |
model = _make_model(size, quantizers, tunables, | |
spk_width=spk_width, | |
atoks_width=amodel and amodel.quantizer.vq.layers[0]._codebook.embed.shape[-1], | |
stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1]) | |
if vqmodel: model.load_frozen_semantic_embeddings(vqmodel) | |
if amodel: model.load_frozen_acoustic_embeddings(amodel) | |
return model | |