WhisperSpeech / whisperspeech /t2s_up_wds_mlang_enclm.py
tonic
Laion WhisperSpeech Demo
33d9042
raw
history blame
22.3 kB
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/5B. Multi-lang text to semantic token modeling.ipynb.
# %% auto 0
__all__ = ['load_dataset', 'rand', 'Tunables', 'T2SEmbedding', 'Encoder', 'TSARTransformer', 'make_model']
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 1
import dataclasses
import random
import math
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import record_function
from huggingface_hub import hf_hub_download
from fastcore.basics import store_attr
from fastprogress import progress_bar
from pathlib import Path
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 2
from whisperspeech.modules import *
from whisperspeech import languages
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 6
import re
class CharTokenizer:
"""Trivial tokenizer – just use UTF-8 bytes"""
eot = 0
def encode(self, txt):
return list(bytes(txt.strip(), 'utf-8'))
def decode(self, tokens):
return bytes(tokens).decode('utf-8')
def tokenizer(ikey, okey, length):
"""Tokenizes a transcript"""
tok = CharTokenizer()
def _tokenizer(samples):
for s in samples:
toks = torch.tensor(tok.encode(s[ikey]))
s[okey] = F.pad(toks, (0, length - toks.shape[-1]), value=tok.eot)
yield s
return _tokenizer
def ar_padder(ikey, okey, length, pad_token):
"""Pads the tokens for autoregresive training"""
import numpy as np
def _ar_padder(samples):
for s in samples:
toks = s[ikey]
if isinstance(toks, (list, np.ndarray)): toks = torch.tensor(toks)
toks = toks.to(torch.long)
s['in_' +okey] = F.pad(toks, (1, length - toks.shape[-1] - 1), value=pad_token)
s['out_'+okey] = F.pad(toks, (0, length - toks.shape[-1]), value=pad_token)
yield s
return _ar_padder
def char_per_seconder(txt_key, stoks_key, cps_key, stoks_per_second=25):
"""Adds the characters per second metric to the input data"""
def _char_per_seconder(samples):
for s in samples:
secs = s[stoks_key].shape[-1] / stoks_per_second
s[cps_key] = len(s[txt_key]) / secs
yield s
return _char_per_seconder
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 7
def load_dataset(
txt_shard_spec:str, # transcription webdataset shards
stoks_shard_dir:str, # stoks webdataset base dir
samples:int, # samples per epoch
txt_kind:str='small.en-txt',
vq_codes:int=4096,
language:str='en',
weight:float=1,
validation:bool=False,
exclude_files:str=None,
):
import webdataset as wds
from whisperspeech import utils
shards = utils.shard_glob(txt_shard_spec)
excludes = {x for file in exclude_files.split() for x in utils.readlines(file)} if exclude_files else set()
language = languages.to_id(language)
def set_language(x):
x['language'] = language
return x
same_on_all_nodes = lambda urls: urls # will only be used for validation
ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose(
wds.decode(),
utils.merge_in(utils.derived_dataset('eqvad-stoks', base=txt_kind, suffix='', dir=stoks_shard_dir)),
# discard validation samples, select samples > .5s
wds.select(lambda s: s['__key__'] not in excludes and s['stoks.npy'].shape[-1] > 12),
tokenizer('txt', 'ttoks', length=550),
ar_padder('stoks.npy', 'stoks', length=750, pad_token=vq_codes-1),
ar_padder('ttoks', 'ttoks', length=550, pad_token=CharTokenizer.eot),
char_per_seconder('txt', 'stoks.npy', 'cps', stoks_per_second=25),
wds.map(set_language),
wds.to_tuple('in_ttoks', 'out_ttoks', 'language', 'cps', 'in_stoks', 'out_stoks'),
wds.shuffle(20000, initial=20000),
wds.batched(64)
)
if validation:
ds = ds.slice(samples // 64)
ds.total_samples = samples
ds.stoks_len = 750
ds.stoks_codes = vq_codes
ds.ttoks_len = 550
ds.weight = weight
return ds
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 14
def rand(start, end):
return random.random() * (end - start) + start
@dataclasses.dataclass
class Tunables:
init_std :float = 1
embeddings_std :float = .01
embeddings_lr_scale: float = 5
embedding_projector_lr_scale: float = 2.5
output_mult :float = .35
query_mult :float = 1
encoder_depth_ratio :float = 0.25
eot_dropout_p :float = .5
cps_input: bool = True
cps_bins: int = 32
lr0 :float = 1.5e-3
clip_gradient_norm :float = .2
weight_decay :float = 1e-1
warmup_steps :float = 4000
random :bool = False
def __post_init__(self):
# randomize the hyperparams if requested
if self.random:
self.init_std = 10**rand(-1,1)
self.embeddings_std = 10**rand(-3,-.7)
self.embeddings_lr_scale = rand(2,6)
self.output_mult = rand(0.25,0.65)
self.query_mult = 2**rand(-2,3)
self.encoder_depth_ratio = 0.25
self.lr0 = rand(1,5)*1e-3
self.clip_gradient_norm = 10**rand(-3,0)
self.warmup_steps = 100*(10**rand(1,1.85))
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 15
class T2SEmbedding(nn.Module):
def __init__(self, length=1500, codes=1024, width=384, pos_embs=None, stoks_width=384):
super().__init__()
self.embedding = FlexEmbeddings(codes, width, special_codes=1, frozen_width=stoks_width)
if pos_embs is None: pos_embs = sinusoids(length, width)
self.register_buffer("positional_embedding", pos_embs)
def forward(self, Stoks, xenc, cps=None, offset=0):
Sembs = self.embedding(Stoks)
xin = (Sembs + self.positional_embedding[offset : offset + Sembs.shape[1]]).to(xenc.dtype)
if cps is not None: xin = xin + cps
return xin, offset
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 16
class Encoder(nn.Module):
def __init__(self, depth=6, width=384, n_head=6, length=1500, codes=1024, emb_width=384, ffn_mult=4, pos_embs=None, tunables=Tunables()):
super().__init__()
self.emb_width = emb_width
self.embedding = FlexEmbeddings(codes, width, frozen_width=emb_width)
if pos_embs is None: pos_embs = sinusoids(length, width)
self.register_buffer("positional_embedding", pos_embs)
self.layers = nn.ModuleList([
ResidualAttentionBlock(width, n_head,
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth)
])
self.ln_post = LayerNorm(width)
mask = torch.empty(length, length).fill_(-torch.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, Stoks, positions, lang_emb=None):
xin = self.embedding(Stoks)
if lang_emb is not None: xin += lang_emb
# assert xin.shape[1:] == self.positional_embedding.shape, "incorrect semantic token shape"
x = (xin +
self.positional_embedding[positions]).to(xin.dtype)
for l in self.layers: x = l(x, positions, causal=False, mask=self.mask)
return self.ln_post(x)
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 17
class TSARTransformer(nn.Module):
def __init__(self, depth=6, n_head=6, head_width=64, ffn_mult=4,
ttoks_len=200, ttoks_codes=256, ttoks_width=None,
stoks_len=1500, stoks_codes=1024, stoks_width=None,
tunables=Tunables()):
super().__init__()
store_attr("depth,n_head,head_width,ffn_mult,stoks_width,ttoks_width,ttoks_len,stoks_len,ttoks_codes,stoks_codes")
width = n_head * head_width
self.width = width
self.base_width = 3 * head_width
self.tunables = tunables
if self.stoks_width is None: self.stoks_width = self.width
if self.ttoks_width is None: self.ttoks_width = self.width
self.lang_embeddings = nn.Embedding(len(languages.languages), width)
if tunables.cps_input:
self.cps_embeddings = nn.Embedding(tunables.cps_bins, self.width)
else:
self.cps_embeddings = None
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
decoder_depth = depth * 2 - encoder_depth
tformer_args = dict(width=width, n_head=n_head, ffn_mult=ffn_mult, tunables=tunables)
self.encoder = Encoder(length=ttoks_len, codes=ttoks_codes, emb_width=self.ttoks_width, depth=encoder_depth, **tformer_args)
self.embeddings = T2SEmbedding(length=stoks_len, codes=stoks_codes, width=width, stoks_width=self.stoks_width)
self.decoder = BaseDecoder(
length=stoks_len,
depth=decoder_depth,
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head),
width=width, n_head=n_head, ffn_mult=ffn_mult,
)
self.tokenizer = None
self.apply(self.init_transformer)
def load_frozen_semantic_embeddings(self, vqmodel):
self.embeddings.embedding.set_frozen_embeddings(vqmodel.rq.layers[0]._codebook.embed[0])
def setup(self, device):
pass
def init_transformer(self, m):
if isinstance(m, LinearHead):
m.no_weight_decay = True
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, QueryHead):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, nn.Embedding):
m.no_weight_decay = True
m.lr_scale = self.tunables.embeddings_lr_scale
std = self.tunables.embeddings_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, EmbeddingProjector):
m.lr_scale = self.tunables.embedding_projector_lr_scale
std = self.tunables.init_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.Linear):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
std = self.tunables.init_std / m.weight.shape[1]
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
if m.bias is not None:
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.LayerNorm):
m.no_weight_decay = True
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1)
def _embed_cps(self, cpss):
if self.cps_embeddings is None: return None
cps_bin = (cpss / 20 * self.tunables.cps_bins).to(torch.long)
cps_bin[cps_bin >= self.tunables.cps_bins] = self.tunables.cps_bins-1
return self.cps_embeddings(cps_bin).unsqueeze(1)
def run_encoder(self, in_ttoks, languages, cpss):
if len(languages.shape) != 3: lang_embs = self.lang_embeddings(languages)
else: lang_embs = languages
if len(lang_embs.shape) == 2: lang_embs = lang_embs.unsqueeze(1)
cps_emb = self._embed_cps(cpss)
with record_function("encoder"):
positions = torch.arange(0, in_ttoks.shape[1], device=in_ttoks.device)
xenc = self.encoder(in_ttoks.to(torch.long), positions, lang_emb=lang_embs)
return xenc, positions, cps_emb
def forward(self, in_ttoks, out_ttoks, languages, cpss, in_stoks, in_stoks_positions, out_stoks=None, loss=True, offset=None, xenc=None, xenc_positions=None, cps_emb=None):
if xenc is None:
xenc, cps_emb = self.run_encoder(in_ttoks, languages, cpss)
with record_function("decoder"):
x = (self.embeddings.embedding(in_stoks) +
self.embeddings.positional_embedding[in_stoks_positions] +
cps_emb).to(xenc[0].dtype)
x = self.decoder(x, in_stoks_positions, xenc, xenc_positions)
logits = self.embeddings.embedding.unembed(x)
logits = logits * self.tunables.output_mult / (self.width / self.base_width)
if loss is not None:
enc_logits = self.encoder.embedding.unembed(xenc[0])
enc_logits = enc_logits * self.tunables.output_mult / (self.width / self.base_width)
with record_function("loss"):
loss = F.cross_entropy(logits.transpose(-1,-2), out_stoks)
if self.training:
loss += 0.1 * F.cross_entropy(enc_logits.transpose(-1,-2), out_ttoks)
return logits, loss
#
# inference
#
@classmethod
def load_model(cls, ref="collabora/whisperspeech:t2s-small-en+pl.model",
repo_id=None, filename=None, local_filename=None):
if repo_id is None and filename is None and local_filename is None:
if ":" in ref:
repo_id, filename = ref.split(":", 1)
else:
local_filename = ref
if not local_filename:
local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
spec = torch.load(local_filename)
model = cls(**spec['config'], tunables=Tunables(**spec['tunables']))
model.load_state_dict(spec['state_dict'])
model.eval()
return model
def load_checkpoint(self, local_filename):
spec = torch.load(local_filename, map_location='cpu')
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
state_dict = {k.replace('model.', ''):v
for k,v in spec['state_dict'].items()}
self.load_state_dict(state_dict)
return self
def save_model(self, fname):
torch.save(dict(config = self.__stored_args__,
tunables = dataclasses.asdict(self.tunables),
state_dict = self.state_dict()), fname)
def ensure_tokenizer(self):
assert not self.training
if self.tokenizer is None: self.tokenizer = CharTokenizer()
def switch_dtypes(self, dtype=torch.float16):
self.dtype = dtype
for n,m in self.named_modules():
# convert every leaf layer apart from the LayerNorms
if isinstance(m, (nn.Linear, nn.Embedding)):
m.to(dtype)
# take care of buffers ([kv]_cache, masks) that are not in the leaf layers
for bn,b in m.named_buffers(recurse=False):
setattr(m,bn,b.to(dtype))
def optimize(self, max_batch_size=1, dtype=torch.float16, torch_compile=True):
for emb in [self.embeddings.embedding, self.embeddings.embedding]:
emb.convert_for_eval()
for l in self.encoder.layers:
l.attn.convert_for_eval()
for l in self.decoder.layers:
l.attn.convert_for_eval()
l.cross_attn.convert_for_eval()
l.setup_kv_cache(max_batch_size, self.stoks_len, self.ttoks_len)
self.switch_dtypes(dtype)
if torch_compile:
self.generate_next = torch.compile(self.generate_next, mode="reduce-overhead", fullgraph=True)
@property
def device(self):
return next(self.parameters()).device
# from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
def multinomial_sample_one_no_sync(self, probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(self, logits, T=1.0, top_k=None):
logits = logits / max(T, 1e-5)
logits[self.embeddings.embedding.codes:] = -torch.inf
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(self, logits, T=1.0, top_k=None):
probs = self.logits_to_probs(logits[0,-1], T, top_k)
idx_next = self.multinomial_sample_one_no_sync(probs)
return idx_next
def generate_one(self, toks, toks_positions, cps_emb, xenc, xenc_positions, T, top_k):
probs, _ = self(None, None, None, None, toks, toks_positions, loss=None, xenc=xenc, xenc_positions=xenc_positions, cps_emb=cps_emb)
return self.sample(probs, T, top_k)
def generate_next(self, *args, **kwargs):
return self.generate_one(*args, **kwargs)
@torch.no_grad()
def prep(self, txt, cps=15, lang="en"):
dev = self.device
ttoks = torch.tensor(self.tokenizer.encode(txt), device=dev)
ttoks = F.pad(ttoks, (0, self.ttoks_len - len(ttoks)), value=self.tokenizer.eot).unsqueeze(0)
cpss = torch.tensor([cps], device=dev)
langs = torch.tensor([languages.to_id(lang)], device=dev)
return ttoks, cpss, langs
@torch.no_grad()
def generate(self, txt, cps=15, lang="en", N=None, T=0.7, top_k=None, step=None, show_progress_bar=True):
self.ensure_tokenizer()
N = N or self.stoks_len
dev = self.device
ttoks = []
langs = []
if isinstance(lang, list):
lang0 = lang[0]
assert isinstance(txt, list), "lang and txt have to be both lists or strings"
for txt, lang in zip(txt, lang):
tt = self.tokenizer.encode(txt)
ttoks += tt
langs += [languages.to_id(lang)] * len(tt)
elif isinstance(lang, torch.Tensor):
langs = lang
ttoks = self.tokenizer.encode(txt)
else:
lang0 = lang
ttoks = self.tokenizer.encode(txt)
langs = torch.tensor([languages.to_id(lang)], device=dev).unsqueeze(0)
ttoks = torch.tensor(ttoks, device=dev)
ttoks = F.pad(ttoks, (1, self.ttoks_len - len(ttoks) - 1), value=self.tokenizer.eot).unsqueeze(0)
cpss = torch.tensor([cps], device=dev)
if not isinstance(langs, torch.Tensor):
langs = torch.tensor(langs, device=dev)
langs = F.pad(langs, (1, self.ttoks_len - len(langs) - 1), value=languages.to_id(lang0)).unsqueeze(0)
it = range(0,N-1)
if show_progress_bar: it = progress_bar(it)
toks = torch.zeros((1,N), dtype=torch.long, device=dev)
toks[:,0] = self.stoks_codes-1
toks_positions = torch.arange(N, device=dev)
with record_function("encode"):
xenc, xenc_positions, cps_emb = self.run_encoder(ttoks, langs, cpss)
toks_positions = torch.arange(N+1, device=dev)
# contrary to S2A this model works without prefill and is actually a tiny bit faster
# with record_function("prefill"):
# toks[0,1] = self.generate_one(toks[:,:1], toks_positions[:1], cps_emb, xenc, xenc_positions, T, top_k)
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
for i in it:
toks[0,i+1] = self.generate_next(toks[:,i:i+1], toks_positions[i:i+1], cps_emb, xenc, xenc_positions, T, top_k)
if i % 25 == 0 and toks[0,i+1] == self.stoks_codes-1: return toks[0,:i+1]
# for profiling, debugging or early exit
if step is not None: step()
return toks[0,:]
@torch.no_grad()
def generate_batch(self, txts, N=None, T=1.1, top_k=7, show_progress_bar=True):
self.ensure_tokenizer()
N = self.stoks_len
dev = self.device
ttoks = []
for txt in txts:
ttoks_ = torch.tensor(self.tokenizer.encode(txt), device=dev)
ttoks_ = F.pad(ttoks_, (0, self.ttoks_len - len(ttoks_)), value=self.tokenizer.eot).unsqueeze(0)
ttoks.append(ttoks_)
ttoks = torch.cat(ttoks, dim=0)
toks = torch.zeros((len(ttoks),N), dtype=torch.long, device=dev)
it = range(N)
if show_progress_bar: it = progress_bar(it)
for i in it:
p, _ = self(ttoks, toks[:,:i], loss=None)
last_p = p[:,-1]
if top_k:
last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf
tok = torch.multinomial((last_p / float(T)).softmax(-1), 1)
toks[:,i] = tok[:,0]
if (toks[:,i] == self.stoks_codes-1).all(): return toks[:,:i]
return toks
# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 18
def _make_model(size:str, tunables:Tunables=Tunables(), dataset=None, **kwargs):
kwargs = dict(stoks_len = dataset.stoks_len, ttoks_len = dataset.ttoks_len, tunables=tunables, **kwargs)
if 'stoks_codes' not in kwargs: kwargs['stoks_codes'] = dataset.stoks_codes
if size == 'micro':
return TSARTransformer(depth=2, n_head=3, ffn_mult=1, **kwargs)
if size == 'tiny':
return TSARTransformer(depth=4, n_head=6, **kwargs)
if size == 'base':
return TSARTransformer(depth=6, n_head=8, **kwargs)
if size == 'small':
return TSARTransformer(depth=12, n_head=12, **kwargs)
if size == 'small+':
return TSARTransformer(depth=12, n_head=16, **kwargs)
if size == 'medium':
return TSARTransformer(depth=24, n_head=16, **kwargs)
def make_model(size:str, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
from whisperspeech import vq_stoks
if frozen_embeddings_model:
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model)
model = _make_model(size, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
model.load_frozen_semantic_embeddings(vqmodel)
else:
model = _make_model(size, tunables, dataset, mode=mode)
return model