# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/4B. Semantic to acoustic token modeling.ipynb.
# %% auto 0
__all__ = ['load_datasets', 'CMLMVisual', 'Rotary', 'rotate_half', 'apply_rotary_pos_emb', 'ResidualAttentionBlock',
'MultiHeadAttention', 'DelSumDecoder', 'EmbeddingProjector', 'rand', 'Tunables', 'SADelARTransformer']
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 1
import io
import time
import math
import random
import dataclasses
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import profile, record_function, ProfilerActivity, schedule
from fastcore.basics import store_attr
from huggingface_hub import hf_hub_download
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 3
from pathlib import Path
import json
from fastprogress import progress_bar, master_bar
import webdataset as wds
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 4
from .train import *
from .modules import *
from . import vq_stoks
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 8
def rand(start, end):
return random.random() * (end - start) + start
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 9
def random_trunc(random_trunc_p, atoks_len = 2250, stoks_len = 750):
atoks_per_second = atoks_len / 30
def _trunc(samples):
for s in samples:
if random.random() < random_trunc_p:
seconds = rand(0.3, 30)
s['atoks.npy'] = s['atoks.npy'][:,:math.ceil(seconds * atoks_per_second)]
s['stoks.npy'] = s['stoks.npy'][:math.ceil(s['atoks.npy'].shape[-1]/atoks_len*stoks_len)]
yield s
return _trunc
def pad_samples(atoks_len = 2250, stoks_len = 750, stoks_pad_token = 4096):
def _pad(samples):
for s in samples:
s['stoks.npy'] = F.pad(torch.tensor(s['stoks.npy']), (0, stoks_len - s['stoks.npy'].shape[-1]), value=stoks_pad_token)
s['atoks.npy'] = F.pad(torch.tensor(s['atoks.npy']), (0, atoks_len - s['atoks.npy'].shape[-1]), value=-100)
yield s
return _pad
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 10
def speaker_id_extractor(speaker_map):
def _extractor(samples):
for s in samples:
s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]])
yield s
return _extractor
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 14
def load_datasets(
input:str, # webdataset folder
samples:int, # samples per epoch
subsample:float=1, # use a fraction of the files
val_samples:int=512,
random_trunc_p:float=0,# probability of truncating the input to less than 30 seconds
stoks_pad_token=4096,
):
if isinstance(input, (Path, str)):
path = Path(input)
if path.is_dir():
glob = '*-s2a-*.tar.gz'
else:
glob = path.name
path = path.parent
input = Path(path).glob(glob)
elif isinstance(input, list):
pass
else:
raise ArgumentError("input should be either a list or a path with an optional glob specifier")
shards = [str(x) for x in input]
speakers = set()
for shard in shards:
with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines()))
speakers = {id:i for i,id in enumerate(sorted(speakers))}
def ds(shards, length):
ds = wds.WebDataset(wds.ResampledShards(shards)).compose(
wds.decode(),
speaker_id_extractor(speakers),
random_trunc(random_trunc_p) if random_trunc_p > 0 else lambda x: x,
pad_samples(stoks_pad_token=stoks_pad_token),
wds.to_tuple('stoks.npy', 'atoks.npy', 'speaker'),
wds.batched(64),
)
ds.speakers = speakers
ds.total_samples = length
return ds.compose(wds.slice(length // 64)).with_epoch(length // 64).with_length(length // 64)
return (
ds(shards[1:], samples),
ds(shards[:1], val_samples),
)
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 33
import pylab as plt
import fastprogress
import IPython
import numpy as np
class CMLMVisual:
"""Visualize training progress"""
def __init__ (self, model, masterbar, total_steps):
self.model = model
self.masterbar = masterbar
self.total_steps = total_steps
self.epochs = total_steps // masterbar.main_bar.total
gs = plt.GridSpec(3, 1, height_ratios=[2,2,1])
graph_fig = plt.figure(figsize=(10,6))
self.graph_fig = graph_fig
self.loss_p = graph_fig.add_subplot(gs[0])
self.acc_p = graph_fig.add_subplot(gs[1], sharex=self.loss_p)
self.acc_p.tick_params('x', labelbottom=False)
self.lr_p = graph_fig.add_subplot(gs[2], sharex=self.loss_p)
self.lr_p.tick_params('x', labelbottom=False)
self.graph_out = None
self.its = []
self.train_losses = []
self.val_losses = []
self.lr_history = []
self.acc = np.nan
self.acc_history = []
self.pacc_history = []
def show(self):
self.start_t = time.time()
self.masterbar.write(["samples", "train", "val", "time"], table=True)
self.graph_out = display(self.graph_fig, display_id=True)
self.acc_out = display(IPython.display.HTML(''), display_id=True)
def hide(self):
if self.graph_out is not None:
self.graph_out.update(IPython.display.HTML(''))
def plot(self):
loss_p, acc_p, lr_p = self.loss_p, self.acc_p, self.lr_p
loss_p.clear()
loss_p.plot(self.its, self.train_losses)
loss_p.plot(self.its, self.val_losses)
loss_p.set_xlim(0, self.total_steps)
loss_p.set_yscale('log')
acc_p.clear()
for k in self.acc_history[-1].keys():
acc_p.plot(self.its, [x[k] for x in self.acc_history], ':')
# acc_p.plot(self.its, np.stack(self.pacc_history), label=range(len(self.pacc_history[0])))
lr_p.clear()
lrs = np.array(self.lr_history)
lr_p.plot(self.its, lrs)
self.graph_out.update(self.graph_fig)
def add_data(self, it, lr, train_loss, val_los):
self.its.append(it)
self.train_losses.append(train_loss)
self.val_losses.append(val_los)
self.lr_history.append(lr)
metrics = self.model.get_metrics()
self.acc_history.append(metrics)
# self.acc_out.update(f"Accuracy: {self.entropy_history[-1]:.2f}")
# self.pacc_history.append((self.model.pval_true / self.model.pval_total).cpu().numpy())
# if self.acc_history:
html = "
Accuracies:
"
html += ""+(''.join([f"{k} | " for k,x in metrics.items()]))+" | "
html += ""+(''.join([f"{x*100:.1f}% | " for k,x in metrics.items()]))+" |
"
html += "
"
self.acc_out.update(IPython.display.HTML(html))
self.plot()
def add_table_row(self, it, avg_train_loss, val_loss):
elapsed_t = time.time() - self.start_t
self.masterbar.write([it, f"{avg_train_loss:.5f}", f"{val_loss:.5f}", fastprogress.core.format_time(elapsed_t)], table=True)
def on_iter(self, bar, it, avg_train_loss, val_loss):
epoch = math.ceil(it / self.total_steps * self.epochs)
bar.comment = f"#{epoch}/{self.epochs} loss: {avg_train_loss:.3f} / {val_loss:.3f}"
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 34
# modified from https://blog.eleuther.ai/rotary-embeddings/
import torch
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_dim=1):
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, :, None, :]
self.sin_cached = emb.sin()[None, :, None, :]
return self.cos_cached, self.sin_cached
# rotary pos emb helpers:
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat(
(-x2, x1), dim=-1
)
#@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin):
return (q * cos[:,:q.shape[1]]) + (rotate_half(q) * sin[:,:q.shape[1]]), (k * cos) + (rotate_half(k) * sin)
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 35
from torch import Tensor, nn
import torch.nn.functional as F
from typing import Dict, Iterable, Optional
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False, rope: bool = False,
qk_scale: float = 1, ffn_mult: int = 4):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head, qk_scale=qk_scale, rope=rope)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = (
MultiHeadAttention(n_state, n_head, qk_scale=qk_scale, rope=rope) if cross_attention else None
)
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * ffn_mult
self.mlp = nn.Sequential(
nn.Linear(n_state, n_mlp), nn.GELU(), nn.Linear(n_mlp, n_state)
)
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
causal = False,
kv_cache: Optional[dict] = None,
):
x = x + self.attn(self.attn_ln(x), causal=causal, kv_cache=kv_cache)[0]
if self.cross_attn:
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
x = x + self.mlp(self.mlp_ln(x))
return x
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int, qk_scale: float = 1, rope: bool = False):
super().__init__()
self.n_head = n_head
self.sqrt_qk_scale = math.sqrt(qk_scale)
self.query = QueryHead(n_state, n_state)
self.key = nn.Linear(n_state, n_state, bias=False)
self.value = nn.Linear(n_state, n_state)
self.out = nn.Linear(n_state, n_state)
self.rotary = None
if rope:
self.rotary = Rotary(n_state // n_head)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
causal = False,
kv_cache: Optional[dict] = None,
):
q = self.query(x)
if kv_cache is None or xa is None or self.key not in kv_cache:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = self.key(x if xa is None else xa)
v = self.value(x if xa is None else xa)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache[self.key]
v = kv_cache[self.value]
if self.sqrt_qk_scale != 1:
q *= self.sqrt_qk_scale
k *= self.sqrt_qk_scale
wv, qk = self.qkv_attention_pth20(q, k, v, causal)
# wv, qk = self.qkv_attention_xformers(q, k, v, causal)
return self.out(wv), qk
def qkv_attention_pth20(
self, q: Tensor, k: Tensor, v: Tensor, causal = False
):
n_batch, n_ctx, n_state = q.shape
q = q.view(*q.shape[:2], self.n_head, -1)
k = k.view(*k.shape[:2], self.n_head, -1)
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
#print('before rot:', q.shape, k.shape)
if self.rotary:
q, k = apply_rotary_pos_emb(q, k, *self.rotary(k))
#print(' after rot:', q.shape, k.shape)
k = k.permute(0, 2, 1, 3)
q = q.permute(0, 2, 1, 3)
# modified for better performance under PyTorch 2.0
wv = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0, is_causal=causal)
# previously we've returned q@k which we don't have now
# since it's not actually used anywhere else, let's just keep two return values for compatibility
return wv.permute(0, 2, 1, 3).flatten(start_dim=2), None
def qkv_attention_xformers(
self, q: Tensor, k: Tensor, v: Tensor, causal = False
):
n_batch, n_ctx, n_state = q.shape
q = q.view(*q.shape[:2], self.n_head, -1)
k = k.view(*k.shape[:2], self.n_head, -1)
v = v.view(*v.shape[:2], self.n_head, -1)
if self.rotary:
q, k = apply_rotary_pos_emb(q, k, *self.rotary(k))
bias = xops.LowerTriangularMask() if causal else None
wv = xops.memory_efficient_attention(q,k,v, attn_bias=bias)
# previously we've returned q@k which we don't have now
# since it's not actually used anywhere else, let's just keep two return values for compatibility
return wv.flatten(start_dim=2), None
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 36
class DelSumDecoder(nn.Module):
def __init__(self, depth=6, n_head=6, head_width=64, qk_scale=1, ffn_mult=4, length=2250, codes=1024, quantizers=8, linear_heads=True, rope=False, pos_embs=None):
super().__init__()
self.length = length
width = n_head * head_width
self.width = width
self.codes = codes
self.quantizers = quantizers
self.linear_heads = linear_heads
self.embeddings = nn.ModuleList([nn.Embedding(codes+1, width) for _ in range(quantizers)])
if pos_embs is not None:
self.register_buffer("positional_embedding", pos_embs)
self.layers = nn.ModuleList([
ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, cross_attention=True, rope=rope) for _ in range(math.floor(depth))
])
self.ln_post = LayerNorm(width)
if self.linear_heads:
self.heads = LinearHead(width, (codes+1) * quantizers, bias=False)
else:
self.splitter = nn.Sequential(
nn.Linear(width, width * quantizers),
nn.GELU(),
)
self.heads = nn.ModuleList([
LinearHead(width, codes+1, bias=True) for _ in range(quantizers)
])
def forward(self, toks, xenc):
b,_,n = toks.shape
newn = min(n+1, self.length)
embs = torch.zeros((b,newn,self.width), dtype=xenc.dtype, device=xenc.device)
for i in range(self.quantizers):
embs[:,:i+1] += self.embeddings[i](torch.tensor([self.codes], device=xenc.device))
if i < n:
embs[:,i+1:] += self.embeddings[i](toks[:,i,:newn-i-1])
x = embs.to(xenc.dtype)
for l in self.layers:
x = l(x, xenc, causal=True)
x = self.ln_post(x)
if self.linear_heads:
logits = self.heads(x).view(b,newn,self.quantizers,self.codes+1).permute(0,2,1,3)
else:
split = self.splitter(x).view(b,newn,self.quantizers,self.width)
logits = torch.stack([self.heads[q](split[:,:,q]) for q in range(self.quantizers)], dim=1)
return logits
class EmbeddingProjector(nn.Linear):
pass
def rand(start, end):
return random.random() * (end - start) + start
@dataclasses.dataclass
class Tunables:
init_std :float = 9
embeddings_std :float = 0.2
embeddings_lr_scale: float = 10
output_mult :float = 5.6
# FIXME: try separate mults for self and cross attention
query_mult :float = .3
encoder_depth_ratio :float = 0.25
linear_heads :bool = False
rope :bool = True
lr0 :float = 3e-3
clip_gradient_norm :float = 2
weight_decay :float = 1e-3
warmup_steps :float = 2000
random :bool = False
def __post_init__(self):
# randomize the hyperparams if requested
if self.random:
self.init_std = 2*10**rand(0,1)
self.embeddings_std = 10**rand(-1.7,-0.22)
self.embeddings_lr_scale = 2**rand(2,4)
self.output_mult = 2**rand(1.5,3)
self.query_mult = 2**rand(-3,-1.3)
self.encoder_depth_ratio = random.choice([0.25,0.5])
self.linear_heads = False
self.rope = True
self.lr0 = 3e-3
self.clip_gradient_norm = 10**rand(-1,1)
self.warmup_steps = 100*(10**rand(1.18,1.3))
@staticmethod
def upgrade(args):
args = {k:v for k,v in args.items()}
def old_default(name, value):
if name not in args: args[name] = value
old_default('rope', False)
old_default('linear_heads', True)
return args
class SADelARTransformer(nn.Module):
def __init__(self, depth=3, ctx_n=2250, stoks_len=750, stoks_codes=4097, stoks_width=None, spk_width=None, n_head=3, head_width=64, ffn_mult=4,
quantizers=8, speaker_map={"1":0}, tunables=Tunables()):
super().__init__()
self.quantizers = quantizers
width = n_head * head_width
store_attr("depth,ctx_n,stoks_len,stoks_codes,stoks_width,spk_width,n_head,head_width,ffn_mult,quantizers,speaker_map")
self.width = width
self.base_width = 3 * head_width
self.tunables = tunables
if stoks_width is None: stoks_width = width
if spk_width is None: spk_width = width
self.emb_factor = width != stoks_width
self.spk_factor = width != spk_width
if tunables.rope:
self.positional_embeddings = None
else:
self.register_buffer('positional_embeddings', sinusoids(ctx_n, width))
self.speaker_embedding = nn.Embedding(len(speaker_map), width)
self.semantic_embedding = nn.Embedding(stoks_codes, stoks_width)
if self.emb_factor:
self.emb_to_hidden = nn.Linear(stoks_width, width)
if self.spk_factor:
self.spk_to_hidden = EmbeddingProjector(spk_width, width)
qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width)
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
decoder_depth = depth * 2 - encoder_depth
self.encoder = nn.Sequential(*[
ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(encoder_depth)
])
self.ln_post = LayerNorm(width)
self.decoder = DelSumDecoder(pos_embs=self.positional_embeddings, qk_scale=qk_scale,
length=ctx_n, n_head=n_head, head_width=head_width, ffn_mult=ffn_mult,
depth=decoder_depth, quantizers=quantizers,
linear_heads=tunables.linear_heads, rope=tunables.rope)
self.register_buffer('val_true', torch.zeros(self.quantizers).cuda())
self.register_buffer('val_total', torch.zeros(self.quantizers).cuda())
self.apply(self.init_transformer)
def setup(self, device):
pass
def load_frozen_semantic_embeddings(self, vqmodel):
with torch.no_grad():
self.semantic_embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0]
self.semantic_embedding.lr_scale = 0
def init_transformer(self, m):
if isinstance(m, LinearHead):
m.no_weight_decay = True
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, QueryHead):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, nn.Embedding):
m.no_weight_decay = True
m.lr_scale = self.tunables.embeddings_lr_scale
std = self.tunables.embeddings_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, EmbeddingProjector):
m.lr_scale = self.tunables.embeddings_lr_scale/2
std = self.tunables.init_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.Linear):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
std = self.tunables.init_std / m.weight.shape[1]
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
if m.bias is not None:
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.LayerNorm):
m.no_weight_decay = True
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1)
def embed_stoks(self, Stoks):
b,n = Stoks.shape
if self.stoks_len == 1500:
# converts 50 toks/s to 75 toks/s by adding padding between every two tokens
x = Stoks.reshape(b,n//2,2)
x = x.repeat_interleave(2, -1)[:,:,:3]
x[:,:,1] = 1024
x = x.reshape(b,n//2*3)
else:
# it's a lot easier with 25 toks/s
x = Stoks.repeat_interleave(3, -1)
# embed semantic tokens
Sembs = self.semantic_embedding(x.to(torch.long))
if self.emb_factor:
Sembs = self.emb_to_hidden(Sembs)
return Sembs
def forward(self, Stoks, Atoks, speakers, noloss=False):
Atoks = Atoks.to(torch.long)
semb = self.embed_stoks(Stoks)
with record_function("encoder"):
if self.positional_embeddings is not None: semb = semb + self.positional_embeddings
xenc = self.ln_post(self.encoder(semb))
# xenc = torch.zeros_like(xenc)
with record_function("decoder"):
Atoks_gt = Atoks.clone()
Atoks_gt[Atoks == -100] = 1024
# we can randomize speaker ids during validation to measure
# the importance of the speaker embedding vs. just the acoustic prompt/prefix
# if not self.training: speakers = speakers[torch.randperm(speakers.nelement())]
spk_embs = self.speaker_embedding(speakers)
if self.spk_factor: spk_embs = self.spk_to_hidden(spk_embs)
logits = self.decoder(Atoks_gt, xenc + spk_embs.unsqueeze(1))
logits *= self.tunables.output_mult / (self.width / self.base_width)
if noloss:
return logits
with record_function("loss"):
N = Atoks.shape[-1]
loss = 0
for i in range(self.quantizers):
loss += F.cross_entropy(logits[:,i,i:].reshape(-1,logits.shape[-1]), Atoks[:,i,:N-i].reshape(-1))
loss /= self.quantizers
if not self.training:
for i in range(self.quantizers):
Atoks_i = Atoks[:,i,:N-i]
valid_Atoks = Atoks_i != -100
self.val_true[i] += (logits[:,i,i:].argmax(-1)[valid_Atoks] == Atoks_i[valid_Atoks]).float().sum()
self.val_total[i] += valid_Atoks.float().sum()
return logits, loss
def get_metrics(self):
metrics = {
f'acc_{i}':x.item() for i,x in enumerate(self.val_true / self.val_total)
}
self.val_true[:] = 0
self.val_total[:] = 0
return metrics
#
# inference
#
@classmethod
def load_model(cls, repo_id="collabora/whisperspeech", filename="s2a_up_wds.model", local_filename=None):
if not local_filename:
local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
spec = torch.load(local_filename)
if '_extra_state' not in spec['state_dict']: spec['state_dict']['_extra_state'] = { 'speaker_map': spec['config']['speaker_map'] }
model = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec['tunables'])))
model.load_state_dict(spec['state_dict'])
model.eval()
return model
def get_extra_state(self):
return { 'speaker_map': self.speaker_map }
def set_extra_state(self, st):
self.speaker_map = st['speaker_map']
def load_checkpoint(self, local_filename):
spec = torch.load(local_filename, map_location='cpu')
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
state_dict = {k.replace('model.', ''):v
for k,v in spec['state_dict'].items()}
self.load_state_dict(state_dict)
return self
def save_model(self, fname):
torch.save(dict(config = self.__stored_args__,
tunables = dataclasses.asdict(self.tunables),
state_dict = self.state_dict()), fname)
@property
def device(self):
return next(self.parameters()).device
@torch.no_grad()
def generate(self, stoks, speakers, N=None, T=0.7, top_k=None, show_progress_bar=True):
dev = self.device
if self.stoks_len == 1500:
N = N or len(stoks) * 3 // 2
else:
N = N or len(stoks) * 3
stoks = F.pad(stoks.to(dev), (0, self.stoks_len - len(stoks)), value=self.stoks_codes-1).unsqueeze(0)
speakers = torch.tensor([self.speaker_map[spk] for spk in speakers], device=dev)
toks = torch.zeros((1,self.quantizers,N), dtype=torch.long, device=dev)
it = range(0,N)
if show_progress_bar: it = progress_bar(it)
for i in it:
p = self(stoks, toks[:,:,:i], speakers, noloss=True)
last_p = p[0,:,-1]
if top_k:
last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf
for j,tok in enumerate(torch.multinomial((last_p / float(T)).softmax(-1), 1)):
toks[0,j,max(0,i-j)] = tok
if toks[0,0,i] == 1024: return toks[0,:,:i]
return toks[0]
# %% ../nbs/4B. Semantic to acoustic token modeling.ipynb 37
def _make_model(size:str, quantizers:int=4, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None, **kwargs):
assert(dataset is not None)
kwargs = dict(speaker_map=dataset.speakers, quantizers=quantizers, tunables=tunables, **kwargs)
if size == 'micro':
return SADelARTransformer(depth=4, n_head=3, ffn_mult=2, **kwargs)
if size == 'tiny-narrow':
return SADelARTransformer(depth=4, n_head=6, ffn_mult=1, **kwargs)
if size == 'tiny':
return SADelARTransformer(depth=4, n_head=6, **kwargs)
if size == 'base':
return SADelARTransformer(depth=6, n_head=8, **kwargs)
if size == 'base-deep':
return SADelARTransformer(depth=9, n_head=8, **kwargs)
if size == 'base-wide':
return SADelARTransformer(depth=6, n_head=12, **kwargs)
if size == 'small/2':
return SADelARTransformer(depth=9, n_head=12, **kwargs)
if size == 'small':
return SADelARTransformer(depth=12, n_head=12, **kwargs)
if size == 'medium':
return SADelARTransformer(depth=24, n_head=16, **kwargs)
def make_model(size:str, quantizers:int=4, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
if frozen_embeddings_model:
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model)
model = _make_model(size, quantizers, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
model.load_frozen_semantic_embeddings(vqmodel)
else:
model = _make_model(size, quantizers, tunables, dataset)
return model