import spaces import tempfile import wave import gradio as gr import os import re import torch import soundfile as sf import numpy as np import torch.nn.functional as F from whisperspeech.pipeline import Pipeline from whisperspeech.languages import LANGUAGES from whisperspeech.utils import resampler title = """# 🙋🏻‍♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech) You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗 ### How to Use Input text with tahe language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print.Scroll down and try the api <3 Gradio. This space runs on ZeroGPU, so **you need to be patient** while you acquire the GPU and load the model the first time you make a request ! """ text_examples = [ [" WhisperSpeech is an opensource library that helps you hack whisper."], [" WhisperSpeech is multi-lingual y puede cambiar de idioma मध्य वाक्य में"], [" The big difference between Europe et les Etats Unis jest to, że mamy tak wiele języków тут, в Європі"] ] def parse_multilingual_text(input_text): pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)" segments = re.findall(pattern, input_text) return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()] @spaces.GPU(enable_queue=True) def generate_segment_audio(text, lang, speaker_audio, pipe): if not isinstance(text, str): text = text.decode("utf-8") if isinstance(text, bytes) else str(text) speaker_audio_data = speaker_audio audio_data = pipe.generate(text, speaker_audio_data, lang) resample_audio = resampler(newsr=24000) audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k'] audio_np = audio_data_resampled.cpu().numpy() # Debug statement print("Shape after resampling:", audio_np.shape) return audio_np def concatenate_audio_segments(segments): concatenated_audio = np.concatenate(segments , axis=1) return concatenated_audio @spaces.GPU(enable_queue=True) def whisper_speech_demo(multilingual_text, speaker_audio): segments = parse_multilingual_text(multilingual_text) if not segments: return None, "No valid language segments found. Please use the format: text" pipe = Pipeline() if not hasattr(pipe, 's2a'): return None, "Pipeline initialization failed. s2a model not loaded." speaker_url = speaker_audio if speaker_audio is not None else None audio_segments = [] for lang, text in segments: text_str = text if isinstance(text, str) else str(text) audio_np = generate_segment_audio(text_str, lang, speaker_url, pipe) # Debug statement print("Audio segment shape:", audio_np.shape) audio_segments.append(audio_np) concatenated_audio = concatenate_audio_segments(audio_segments) # Debug statement print("Final concatenated audio shape:", concatenated_audio.shape) concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio)) with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file: sf.write(tmp_file.name, concatenated_audio.T, 24000, format='WAV', subtype='PCM_16') return tmp_file.name with gr.Blocks() as demo: gr.Markdown(title) output_audio = gr.Audio(label="🌟Collabora🌬️💬📝WhisperSpeech") generate_button = gr.Button("Try 🌟Collabora🌬️💬📝WhisperSpeech") with gr.Accordion("🌟Collabora🌬️WhisperSpeech💬Voice Print and📝Language List", open=False): with gr.Row(): speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)🌬️💬", sources=["upload", "microphone"]) with gr.Row(): with gr.Accordion("Available Languages and Their Tags", open=False): formatted_language_list = "\n".join([f"`<{lang}>` {LANGUAGES[lang]}" for lang in LANGUAGES]) gr.Markdown(formatted_language_list) with gr.Row(): text_input = gr.Textbox(label="Enter multilingual text💬📝", placeholder="e.g., Hello Bonjour Hola") with gr.Row(): with gr.Accordion("Try Multilingual Text Examples", open=False): gr.Examples( examples=text_examples, inputs=[text_input], outputs=[output_audio], fn=whisper_speech_demo, cache_examples=False, label="Try these to get started !🌟🌬️" ) generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio) demo.launch()