Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,937 Bytes
a09c6ce 0ce1955 d3feef7 4b83871 60c488a d3feef7 f171306 60c488a f171306 60c488a f171306 60c488a f171306 60c488a b65a52e bf97766 01c8c6c bf97766 b65a52e 60c488a 8652a18 60c488a 54a8d6c d3feef7 01c8c6c 4b83871 d3feef7 b585e42 54a8d6c 0adb712 54a8d6c 0adb712 54a8d6c c2f09d8 54a8d6c 60c488a 54a8d6c 60c488a 54a8d6c b585e42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
from collinear import Collinear
import os
import json
from openai import AsyncOpenAI
from jinja2 import Template
collinear = Collinear(access_token=os.getenv('COLLINEAR_API_KEY'))
prompt = Template("""
iven the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
--
QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
{{question}}
--
DOCUMENT:
{{context}}
--
ANSWER:
{{answer}}
--
""")
def update_inputs(input_style):
if input_style == "Dialog":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif input_style == "NLI":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif input_style == "QA format":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
async def lynx(input_style_dropdown,document_input,question_input,answer_input):
if input_style_dropdown=='QA format':
client = AsyncOpenAI(
base_url="https://s6mipt5j797e6fql.us-east-1.aws.endpoints.huggingface.cloud/v1/",
api_key=os.getenv("HF_TOKEN")
)
rendered_prompt = prompt.render(question=question_input,context=document_input,answer=answer_input)
rendered_prompt +="""
Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
{{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
"""
chat_completion = await client.chat.completions.create(
model="tgi",
messages=[
{
"role": "user",
"content": rendered_prompt
}
],
top_p=None,
temperature=None,
max_tokens=150,
stream=False,
seed=None,
frequency_penalty=None,
presence_penalty=None
)
print(chat_completion)
return chat_completion.choices.pop().message.content
else:
return 'NA'
# Function to judge reliability based on the selected input format
async def judge_reliability(input_style, document, conversation, claim, question, answer):
if input_style == "Dialog":
conversation = json.loads(conversation)
print(conversation)
outputs= await collinear.judge.veritas.conversation(document,conversation[:-1],conversation[-1])
elif input_style == "NLI":
outputs = await collinear.judge.veritas.natural_language_inference(document,claim)
elif input_style == "QA format":
outputs = await collinear.judge.veritas.question_answer(document,question,answer)
results = f"Reliability Judge Outputs: {outputs}"
return results
# Create the interface using gr.Blocks
with gr.Blocks() as demo:
gr.Markdown(
"""
<p style='text-align: center;color:white'>
Test Collinear Veritas and compare with Lynx 8B using the sample conversations below or type your own.
Collinear Veritas can work with any input formats including NLI, QA, and dialog.
</p>
"""
)
with gr.Row():
input_style_dropdown = gr.Dropdown(label="Input Style", choices=["Dialog", "NLI", "QA format"], value="Dialog", visible=True)
with gr.Row():
document_input = gr.Textbox(label="Document", lines=5, visible=True, value="""
SAN FRANCISCO--(BUSINESS WIRE)-- Salesforce (NYSE: CRM), the #1 AI CRM, today announced results for its second quarter fiscal 2025 ended July 31, 2024.
Second Quarter Highlights
Second Quarter Revenue of $9.33 Billion, up 8% Year-Over-Year ("Y/Y"), up 9% in Constant Currency ("CC"), inclusive of Subscription & Support Revenue of $8.76 Billion, up 9% Y/Y, up 10% Y/Y in CC
Second Quarter GAAP Operating Margin of 19.1% and non-GAAP Operating Margin of 33.7%
Current Remaining Performance Obligation of $26.5 Billion, up 10% Y/Y, up 11% Y/Y in CC
Second Quarter Operating Cash Flow of $0.89 Billion, up 10% Y/Y, and Free Cash Flow of $0.76 Billion, up 20% Y/Y
Returned $4.3 Billion in the Form of Share Repurchases and $0.4 Billion in Dividend Payments to Stockholders
FY25 Guidance Highlights
Initiates Third Quarter FY25 Revenue Guidance of $9.31 Billion to $9.36 Billion, up 7% Y/Y
Maintains Full Year FY25 Revenue Guidance of $37.7 Billion to $38.0 Billion, up 8% - 9% Y/Y and Maintains Full Year FY25 Subscription & Support Revenue Growth Guidance of Slightly Below 10% Y/Y & Approximately 10% in CC
Updates Full Year FY25 GAAP Operating Margin Guidance to 19.7% and Updates non-GAAP Operating Margin Guidance to 32.8%
Raises Full Year FY25 Operating Cash Flow Growth Guidance to 23% to 25% Y/Y
""")
conversation_input = gr.Textbox(label="Conversation", lines=5, visible=True, value="""[{"role": "user", "content": "Salesforce has a fantastic year with Agent Force"}, {"role": "assistant", "content": "Yes, they seem to be doing quite well."}, {"role": "user", "content": "Can you tell me their projected earnings for next year?"}, {"role": "assistant", "content": "Yes, it is about $38Bn."}]""")
claim_input = gr.Textbox(label="Claim", lines=5, visible=False, value="Salesforce might earn about $38Bn next year")
question_input = gr.Textbox(label="Question", lines=5, visible=False, value="What is Salesforce's revenue guidance for next year?")
answer_input = gr.Textbox(label="Answer", lines=5, visible=False, value="Salesforce revenue guidance for next year is about $38Bn ")
with gr.Row():
result_output = gr.Textbox(label="Veritas Model")
lynx_output = gr.Textbox(label="Lynx Model")
# Set the visibility of inputs based on the selected input style
input_style_dropdown.change(
fn=update_inputs,
inputs=[input_style_dropdown],
outputs=[document_input, conversation_input, claim_input, question_input, answer_input]
)
# Set the function to handle the reliability check
gr.Button("Submit").click(
fn=judge_reliability,
inputs=[input_style_dropdown, document_input, conversation_input, claim_input, question_input, answer_input],
outputs=result_output
).then(
fn=lynx,
inputs=[input_style_dropdown,document_input,question_input,answer_input],
outputs=lynx_output
)
# Launch the demo
if __name__ == "__main__":
demo.launch()
|