File size: 10,612 Bytes
a09c6ce
0ce1955
d3feef7
4b83871
51cd0be
60c488a
 
24ec30d
 
dd8c845
f171306
 
60c488a
 
f171306
60c488a
 
 
f171306
60c488a
 
 
f171306
60c488a
 
b65a52e
641d337
 
 
 
 
 
 
 
5d3c494
 
bf97766
01c8c6c
bf97766
 
 
 
 
 
 
24ec30d
23648c7
bf97766
 
 
 
 
 
b65a52e
 
 
 
 
60c488a
 
 
 
 
8652a18
60c488a
 
 
100b23e
a7b1b03
60c488a
 
 
 
 
23648c7
 
 
73f7da6
23648c7
73f7da6
60c488a
23648c7
 
24ec30d
23648c7
54a8d6c
e052565
 
9ce665a
e052565
 
 
 
 
 
 
 
 
 
 
9ce665a
e052565
 
 
 
 
 
 
 
 
 
 
 
 
 
d3feef7
23648c7
01c8c6c
5d3c494
641d337
4b83871
e052565
d3feef7
3bea114
d3feef7
3bea114
23648c7
 
73f7da6
23648c7
73f7da6
23648c7
e556dcc
c8bef50
b585e42
 
73f7da6
 
c334779
73f7da6
 
 
c334779
73f7da6
 
 
c334779
73f7da6
 
 
c334779
73f7da6
 
 
c334779
73f7da6
 
 
c334779
73f7da6
 
 
c334779
73f7da6
 
 
0b574ad
38ec036
0b574ad
 
73f7da6
c334779
73f7da6
 
 
c334779
73f7da6
 
 
c334779
73f7da6
 
 
 
 
 
54a8d6c
73f7da6
0adb712
 
 
 
 
 
 
 
54a8d6c
0adb712
54a8d6c
 
d62eaa9
a7b1b03
c2f09d8
 
 
 
 
 
 
 
 
 
 
 
 
a7b1b03
641d337
 
 
 
c2f09d8
 
c3ccbd8
54a8d6c
 
23648c7
 
60c488a
23648c7
 
54a8d6c
 
 
 
 
 
 
 
 
 
 
 
 
23648c7
60c488a
 
24ec30d
23648c7
54a8d6c
 
e052565
54a8d6c
b585e42
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
from collinear import Collinear
import os
import json
import time
from openai import AsyncOpenAI
from jinja2 import Template
from datasets import load_dataset, Dataset, DatasetDict
import pandas as pd
collinear = Collinear(access_token=os.getenv('COLLINEAR_API_KEY'),space_id=os.getenv('COLLINEAR_SPACE_ID'))
prompt = Template("""
iven the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
--
QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
{{question}}

--
DOCUMENT:
{{context}}

--
ANSWER:
{{answer}}

--
""")
def convert_to_message_array(conversation):
    message_array = []
    
    for line in conversation.split('\n'):
        if line.startswith('user:'):
            message_array.append({'role': 'user', 'content': line.replace('user:', '').strip()})
        elif line.startswith('assistant:'):
            message_array.append({'role': 'assistant', 'content': line.replace('assistant:', '').strip()})
    return message_array

def update_inputs(input_style):
    if input_style == "Dialog":
        return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    elif input_style == "NLI":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
    elif input_style == "QA format":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)


async def lynx(input_style_dropdown,document_input,question_input,answer_input,claim_input,conversation_input,result_output):
    start_time = time.time()
    if input_style_dropdown=='QA format':
        client = AsyncOpenAI(
        base_url="https://s6mipt5j797e6fql.us-east-1.aws.endpoints.huggingface.cloud/v1/", 
        api_key=os.getenv("HF_TOKEN") 
        )
        rendered_prompt = prompt.render(question=question_input,context=document_input,answer=answer_input)
        rendered_prompt +="""
        
Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
{{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
        """
        chat_completion = await client.chat.completions.create(
            model="tgi",
            messages=[
            {
                "role": "user",
                "content": rendered_prompt
            }
        ],
            top_p=None,
            temperature=None,
            max_tokens=300,
            stream=False,
            seed=None,
            frequency_penalty=None,
            presence_penalty=None
        )
        message = chat_completion.choices.pop().message.content
        message_new = message[len(message)-6:len(message)]
        if 'FAIL' in message_new:
            results = "❌"
        else:
            results = "✅"
    else:
        results = 'NA'
    lynx_time = round(time.time() - start_time, 2)  # Calculate time taken for Lynx
    await add_to_dataset(input_style_dropdown,document_input,question_input,answer_input,claim_input,conversation_input,results,result_output)
    return results, lynx_time
# Function to judge reliability based on the selected input format


async def add_to_dataset(category,document,question,answer,claim,conv_prefix,lynx_output,result_output):
    conv_prefix = convert_to_message_array(conv_prefix)
    dataset = load_dataset("collinear-ai/veritas-demo-dataset")
    new_row = {
        'style':category,
    'document':document,
    'question':question,
    'answer':answer,
    'claim':claim,
    'conv_prefix':conv_prefix[:-1],
    'response':conv_prefix[-1],
    'lynx_output':lynx_output,
    'veritas_output':result_output,
        }
    train_dataset = dataset['train']

    df = train_dataset.to_pandas()
    df2 = pd.DataFrame([new_row])
    df = pd.concat([df, df2],ignore_index=True)

    new_train_dataset = Dataset.from_pandas(df)

    updated_dataset = DatasetDict({
            'train': new_train_dataset
    })
    updated_dataset.push_to_hub("collinear-ai/veritas-demo-dataset",token=os.getenv("HF_TOKEN"))

async def judge_reliability(input_style, document, conversation, claim, question, answer):
    start_time = time.time() 
    if input_style == "Dialog":
        print(conversation)
        conversation = convert_to_message_array(conversation=conversation)
        print(conversation)
        outputs= await collinear.judge.veritas.conversation('72267aea-e1c7-4f38-8eb8-f5e3c2abc279',document,conversation[:-1],conversation[-1])
    elif input_style == "NLI":
        outputs = await collinear.judge.veritas.natural_language_inference('72267aea-e1c7-4f38-8eb8-f5e3c2abc279',document,claim)
    elif input_style == "QA format":
        outputs = await collinear.judge.veritas.question_answer('72267aea-e1c7-4f38-8eb8-f5e3c2abc279',document,question,answer)
    output = outputs.judgement
    if output ==1:
        results = "✅"
    else:
        results = "❌"
    veritas_time = round(time.time() - start_time, 2)  # Calculate time taken for Veritas
    veritas_time = ((1000* veritas_time)-700)/1000
    return results, veritas_time


dark_css = """
body {
    background-color: #000000 !important;
    color: #f5f5f5 !important;
}
.gradio-app {
    background-color: #000000 !important;
    color: #FFFFFF !important;
}
gradio-app {
    background-color: #000000 !important;
    color: #FFFFFF !important;
}
.gradio-container {
    background-color: #000000 !important;
    color: #FFFFFF !important;
}
.container {
    background-color: #000000 !important;
    color: #FFFFFF !important;
}
.form {
    background-color: #000000 !important;
    color: #FFFFFF !important;
}
.gap {
    background-color: #000000 !important;
    color: #FFFFFF !important;
}
#orange-button{ background-color: #FFA500 !important; color: #000000}
#component-5 {
    height: 20rem !important;  /* Adjust the height as needed */
    overflow: auto;  /* Ensure scrollbars appear for overflow content */
}
.block {
    background-color: #000000 !important;
    color: #FFFFFF !important;
}
.wrap {
    background-color: #000000 !important;
    color: #FFFFFF !important;
}
textarea, input, select {
    background-color: #000000 !important;
    color: #f5f5f5 !important;
    border-color: #555555 !important;
}
label {
    color: #f5f5f5 !important;
}"""
# Create the interface using gr.Blocks
with gr.Blocks(css=dark_css) as demo:
    gr.Markdown(
        """
        <p style='text-align: center;color:white'>
        Test Collinear Veritas and compare with Lynx 8B using the sample conversations below or type your own.
        Collinear Veritas can work with any input formats including NLI, QA, and dialog.
        </p>
        """
    )
    with gr.Row():
        input_style_dropdown = gr.Dropdown(label="Input Style", choices=["Dialog", "NLI", "QA format"], value="Dialog", visible=True)

    with gr.Row():
        document_input = gr.Textbox(label="Document", lines=3, visible=True, value="""August 28, 2024
SAN FRANCISCO--(BUSINESS WIRE)-- Salesforce (NYSE: CRM), the #1 AI CRM, today announced results for its second quarter fiscal 2025 ended July 31, 2024.

Second Quarter Highlights

Second Quarter Revenue of $9.33 Billion, up 8% Year-Over-Year ("Y/Y"), up 9% in Constant Currency ("CC"), inclusive of Subscription & Support Revenue of $8.76 Billion, up 9% Y/Y, up 10% Y/Y in CC
Second Quarter GAAP Operating Margin of 19.1% and non-GAAP Operating Margin of 33.7%
Current Remaining Performance Obligation of $26.5 Billion, up 10% Y/Y, up 11% Y/Y in CC
Second Quarter Operating Cash Flow of $0.89 Billion, up 10% Y/Y, and Free Cash Flow of $0.76 Billion, up 20% Y/Y
Returned $4.3 Billion in the Form of Share Repurchases and $0.4 Billion in Dividend Payments to Stockholders
FY25 Guidance Highlights

Initiates Third Quarter FY25 Revenue Guidance of $9.31 Billion to $9.36 Billion, up 7% Y/Y
Maintains Full Year FY25 Revenue Guidance of $37.7 Billion to $38.0 Billion, up 8% - 9% Y/Y and Maintains Full Year FY25 Subscription & Support Revenue Growth Guidance of Slightly Below 10% Y/Y & Approximately 10% in CC
Updates Full Year FY25 GAAP Operating Margin Guidance to 19.7% and Updates non-GAAP Operating Margin Guidance to 32.8%
Raises Full Year FY25 Operating Cash Flow Growth Guidance to 23% to 25% Y/Y""")
        conversation_input = gr.Textbox(label="Conversation", lines=5, visible=True, value="""user:Salesforce has a fantastic year with Agent Force
assistant: Yes, they seem to be doing quite well.
user:Can you tell me their projected earnings for next year?
assistant:Yes, it is about $38Bn.""")
        claim_input = gr.Textbox(label="Claim", lines=5, visible=False, value="Salesforce might earn about $38Bn next year")
        question_input = gr.Textbox(label="Question", lines=5, visible=False, value="What is Salesforce's revenue guidance for next year?")
        answer_input = gr.Textbox(label="Answer", lines=5, visible=False, value="Salesforce revenue guidance for next year is about $37.8Bn ")

    with gr.Row():
        result_output = gr.Textbox(label="Veritas Model Result")
        veritas_time_output = gr.Textbox(label="Veritas Model Time (seconds)")

        lynx_output = gr.Textbox(label="Lynx Model Result")
        lynx_time_output = gr.Textbox(label="Lynx Model Time (seconds)")


    # Set the visibility of inputs based on the selected input style
    input_style_dropdown.change(
        fn=update_inputs, 
        inputs=[input_style_dropdown], 
        outputs=[document_input, conversation_input, claim_input, question_input, answer_input]
    )

    # Set the function to handle the reliability check
    gr.Button("Submit").click(
        fn=judge_reliability, 
        inputs=[input_style_dropdown, document_input, conversation_input, claim_input, question_input, answer_input], 
        outputs=[result_output,veritas_time_output]
    ).then(
        fn=lynx,
        inputs=[input_style_dropdown,document_input,question_input,answer_input,claim_input,conversation_input,result_output],
        outputs=[lynx_output, lynx_time_output]
    )


# Launch the demo
if __name__ == "__main__":
    demo.launch()