rajkumarrrk's picture
Update app.py
b90ce03 verified
raw
history blame
1.88 kB
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from jinja2 import Template
import torch
import json
# load the judge
device = "cuda:0"
model_name = "collinear-ai/collinear-reliability-judge-v5"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# template
template = Template(
"""
# Document:
{{ document }}
# Conversation:
{% for message in conversation %}
{{ message.role }}: {{ message.content }}
{% endfor %}
"""
)
def judge_reliability(document: str, conversation: str):
with torch.no_grad():
conversation = json.loads(conversation)
text = template.render(document=document, conversation=conversation)
print(text)
encoded = tokenizer([text], padding=True)
input_ids = torch.tensor(encoded.input_ids).to(device)
attention_mask = torch.tensor(encoded.attention_mask).to(device)
outputs = model.forward(input_ids=input_ids, attention_mask=attention_mask)
outputs = torch.softmax(outputs.logits, axis=1)
results = f"Reliability Score: {outputs}"
return results
demo = gr.Interface(
fn=judge_reliability,
inputs=[
gr.Textbox(label="Document", lines=5, value="Chris Voss, was born in Iowa, USA. He is the best negotiator in the world."),
gr.Textbox(label="Conversation", lines=5, value='[{"role": "user", "content": "Where are you born?"}, {"role": "assistant", "content": "I am born in Iowa"}]')
],
outputs=gr.Textbox(label="Results"),
title="Collinear Reliability Judge",
description="Enter a document and conversation (json formatted) to judge reliability. Note: this judges if the last assistant turn is faithful according to the given document ",
theme="default"
)
if __name__ == "__main__":
demo.launch()