import gradio as gr from collinear import Collinear import os import json from openai import AsyncOpenAI from jinja2 import Template collinear = Collinear(access_token=os.getenv('COLLINEAR_API_KEY')) def update_inputs(input_style): if input_style == "Conv": return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif input_style == "NLI": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) elif input_style == "QA format": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) async def lynx(input_style_dropdown,document_input,question_input,answer_input): if input_style_dropdown=='QA format': client = AsyncOpenAI( base_url="https://s6mipt5j797e6fql.us-east-1.aws.endpoints.huggingface.cloud/v1/", api_key=os.getenv("HF_TOKEN") ) PROMPT = Template(""" Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning. -- QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION): {question} -- DOCUMENT: {context} -- ANSWER: {answer} -- Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE": {{"REASONING": , "SCORE": }} """) chat_completion = await client.chat.completions.create( model="tgi", messages=[ { "role": "user", "content": PROMPT.render(question=question_input,context=document_input,answer=answer_input) } ], top_p=None, temperature=None, max_tokens=150, stream=False, seed=None, frequency_penalty=None, presence_penalty=None ) print(chat_completion) return chat_completion.choices.pop().message.content else: return 'NA' # Function to judge reliability based on the selected input format async def judge_reliability(input_style, document, conversation, claim, question, answer): if input_style == "Conv": conversation = json.loads(conversation) print(conversation) outputs= await collinear.judge.veritas.conversation(document,conversation[:-1],conversation[-1]) elif input_style == "NLI": outputs = await collinear.judge.veritas.natural_language_inference(document,claim) elif input_style == "QA format": outputs = await collinear.judge.veritas.question_answer(document,question,answer) results = f"Reliability Judge Outputs: {outputs}" return results # Create the interface using gr.Blocks with gr.Blocks() as demo: with gr.Row(): input_style_dropdown = gr.Dropdown(label="Input Style", choices=["Conv", "NLI", "QA format"], value="Conv", visible=True) with gr.Row(): document_input = gr.Textbox(label="Document", lines=5, visible=True, value="Chris Voss is one of the best negotiators in the world. And he was born in Iowa, USA.") conversation_input = gr.Textbox(label="Conversation", lines=5, visible=True, value='[{"role": "user", "content": "Hi Chris Voss, Where are you born?"}, {"role": "assistant", "content": "I am born in Iowa"}]') claim_input = gr.Textbox(label="Claim", lines=5, visible=False, value="CV was born in Iowa") question_input = gr.Textbox(label="Question", lines=5, visible=False, value="Where is Chris Voss born?") answer_input = gr.Textbox(label="Answer", lines=5, visible=False, value="CV was born in Iowa") with gr.Row(): result_output = gr.Textbox(label="Veritas Model") lynx_output = gr.Textbox(label="Lynx Model") # Set the visibility of inputs based on the selected input style input_style_dropdown.change( fn=update_inputs, inputs=[input_style_dropdown], outputs=[document_input, conversation_input, claim_input, question_input, answer_input] ) # Set the function to handle the reliability check gr.Button("Submit").click( fn=judge_reliability, inputs=[input_style_dropdown, document_input, conversation_input, claim_input, question_input, answer_input], outputs=result_output ).then( fn=lynx, inputs=[input_style_dropdown,document_input,question_input,answer_input], outputs=lynx_output ) # Launch the demo if __name__ == "__main__": demo.launch()