abstracts-index / app.py
colonelwatch's picture
Push index performance up to ~70%
70fd5de
raw
history blame
5.95 kB
# serve.py
# Loads all completed shards and finds the most similar vector to a given query vector.
import requests
from sentence_transformers import SentenceTransformer
import faiss
import gradio as gr
from markdown_it import MarkdownIt # used for overriding default markdown renderer
model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu')
works_ids_path = 'idxs.txt'
with open(works_ids_path) as f:
idxs = f.read().splitlines()
index = faiss.read_index('index.faiss')
ps = faiss.ParameterSpace()
ps.initialize(index)
ps.set_index_parameters(index, 'nprobe=32,ht=512')
def _recover_abstract(inverted_index):
abstract_size = max([max(appearances) for appearances in inverted_index.values()])+1
abstract = [None]*abstract_size
for word, appearances in inverted_index.items(): # yes, this is a second iteration over inverted_index
for appearance in appearances:
abstract[appearance] = word
abstract = [word for word in abstract if word is not None]
abstract = ' '.join(abstract)
return abstract
def search(query):
global model, index, idxs
query_embedding = model.encode(query)
query_embedding = query_embedding.reshape(1, -1)
distances, faiss_ids = index.search(query_embedding, 10)
distances = distances[0]
faiss_ids = faiss_ids[0]
openalex_ids = [idxs[faiss_id] for faiss_id in faiss_ids]
search_filter = f'openalex_id:{"|".join(openalex_ids)}'
search_select = 'id,title,abstract_inverted_index,authorships,primary_location,publication_year,cited_by_count,doi'
neighbors = [(distance, openalex_id) for distance, openalex_id in zip(distances, openalex_ids)]
request_str = f'https://api.openalex.org/works?filter={search_filter}&select={search_select}'
return neighbors, request_str
def execute_request(request_str):
response = requests.get(request_str).json()
return response
def format_response(neighbors, response):
response = {doc['id']: doc for doc in response['results']}
result_string = ''
for distance, openalex_id in neighbors:
doc = response[openalex_id]
# collect attributes from openalex doc for the given openalex_id
title = doc['title']
abstract = _recover_abstract(doc['abstract_inverted_index'])
author_names = [authorship['author']['display_name'] for authorship in doc['authorships']]
# journal_name = doc['primary_location']['source']['display_name']
publication_year = doc['publication_year']
citation_count = doc['cited_by_count']
doi = doc['doi']
# try to get journal name or else set it to None
try:
journal_name = doc['primary_location']['source']['display_name']
except (TypeError, KeyError):
journal_name = None
# title: knock out escape sequences
title = title.replace('\n', '\\n').replace('\r', '\\r')
# abstract: knock out escape sequences, then truncate to 1500 characters if necessary
abstract = abstract.replace('\n', '\\n').replace('\r', '\\r')
if len(abstract) > 2000:
abstract = abstract[:2000] + '...'
# authors: truncate to 3 authors if necessary
if len(author_names) >= 3:
authors_str = ', '.join(author_names[:3]) + ', ...'
else:
authors_str = ', '.join(author_names)
entry_string = ''
if doi: # edge case: for now, no doi -> no link
entry_string += f'## [{title}]({doi})\n\n'
else:
entry_string += f'## {title}\n\n'
if journal_name:
entry_string += f'**{authors_str} - {journal_name}, {publication_year}**\n'
else:
entry_string += f'**{authors_str}, {publication_year}**\n'
entry_string += f'{abstract}\n\n'
if citation_count: # edge case: we shouldn't tack "Cited-by count: 0" onto someone's paper
entry_string += f'*Cited-by count: {citation_count}*'
entry_string += '    '
if doi: # list the doi if it exists
entry_string += f'*DOI: {doi.replace("https://doi.org/", "")}*'
entry_string += '    '
entry_string += f'*Similarity: {distance:.2f}*'
entry_string += '    \n'
result_string += entry_string
return result_string
with gr.Blocks() as demo:
gr.Markdown('# abstracts-search demo')
gr.Markdown(
'Explore 95 million academic publications selected from the [OpenAlex](https://openalex.org) dataset. This '
'project is an index of the embeddings generated from their titles and abstracts. The embeddings were '
'generated using the `all-MiniLM-L6-v2` model provided by the [sentence-transformers](https://www.sbert.net/) '
'module, and the index was built using the [faiss](https://github.com/facebookresearch/faiss) module.'
)
neighbors_var = gr.State()
request_str_var = gr.State()
response_var = gr.State()
query = gr.Textbox(lines=1, placeholder='Enter your query here', show_label=False)
btn = gr.Button('Search')
with gr.Box():
results = gr.Markdown()
md = MarkdownIt('js-default', {'linkify': True, 'typographer': True}) # don't render html or latex!
results.md = md
query.submit(search, inputs=[query], outputs=[neighbors_var, request_str_var]) \
.success(execute_request, inputs=[request_str_var], outputs=[response_var]) \
.success(format_response, inputs=[neighbors_var, response_var], outputs=[results])
btn.click(search, inputs=[query], outputs=[neighbors_var, request_str_var]) \
.success(execute_request, inputs=[request_str_var], outputs=[response_var]) \
.success(format_response, inputs=[neighbors_var, response_var], outputs=[results])
demo.queue()
demo.launch()