File size: 7,534 Bytes
412bf95 a5f640f 412bf95 a5f640f 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 8fa82fa 412bf95 a5f640f 412bf95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import marimo
__generated_with = "0.10.16"
app = marimo.App()
@app.cell
def _():
import marimo as mo
import polars as pl
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
mo.md("# Iris Dataset Showcase")
return (
DecisionTreeClassifier,
accuracy_score,
classification_report,
confusion_matrix,
datasets,
mo,
pl,
train_test_split,
)
@app.cell(hide_code=True)
def _(datasets):
iris = datasets.load_iris()
X = iris.data
y = iris.target
return X, iris, y
@app.cell(hide_code=True)
def _(X, train_test_split, y):
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
return X_test, X_train, y_test, y_train
@app.cell
def _(DecisionTreeClassifier, X_train, mo, y_train):
classifier = DecisionTreeClassifier()
classifier.fit(X_train, y_train)
mo.md(f"""
## Decision Tree Classifier
""")
return (classifier,)
@app.cell
def _(X_test, classifier):
y_pred = classifier.predict(X_test)
return (y_pred,)
@app.cell
def _(
accuracy_score,
classification_report,
confusion_matrix,
mo,
y_pred,
y_test,
):
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
# Confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
# Classification report
class_report = classification_report(y_test, y_pred)
mo.md(f"""
Accuracy: {accuracy}
Confusion Matrix:
```
{conf_matrix}
```
Classification Report:
```
{class_report}
```
""")
return accuracy, class_report, conf_matrix
@app.cell
def _(X_test, pl, y_pred, y_test):
import seaborn as sns
import matplotlib.pyplot as plt
df = pl.DataFrame({
"sepal length (cm)": X_test[:, 0],
"sepal width (cm)": X_test[:, 1],
"Predicted": y_pred,
"Actual": y_test
})
return df, plt, sns
@app.cell
def _(df, mo, plt, sns):
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='sepal length (cm)', y='sepal width (cm)', hue='Predicted', style='Actual', palette='Set1', markers=['o', 's', 'D'])
plt.title('Iris Dataset: Sepal Length vs Sepal Width')
plt.xlabel('Sepal Length (cm)')
plt.ylabel('Sepal Width (cm)')
plt.legend(title='Class')
mo.vstack(
[
mo.md("## Iris Dataset"),
plt.gcf()
]
)
return
@app.cell
def _(conf_matrix, iris, mo, plt, sns):
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.xlabel('Predicted')
plt.ylabel('Actual')
mo.vstack([
mo.md("## Confusion Matrix"),
plt.gcf()
])
return
@app.cell(hide_code=True)
def _(iris, pl):
iris_df = pl.DataFrame(data=iris.data, schema=iris.feature_names)
iris_df = iris_df.with_columns(pl.Series("species", iris.target))
return (iris_df,)
@app.cell
def _(iris_df, mo, plt, sns):
sns.pairplot(iris_df.to_pandas(), hue='species', palette='Set1', markers=["o", "s", "D"])
mo.vstack([
mo.md("## Pair Plot"),
plt.gcf()
])
return
@app.cell
def _(classifier, iris, mo, plt):
from sklearn.tree import plot_tree
plt.figure(figsize=(12, 8))
plot_tree(classifier, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
mo.vstack([
mo.md("## Classifier Decision Tree Visualization"),
plt.gcf()
])
return (plot_tree,)
@app.cell(hide_code=True)
def _():
tips = {
"Saving": (
"""
**Saving**
- _Name_ your app using the box at the top of the screen, or
with `Ctrl/Cmd+s`. You can also create a named app at the
command line, e.g., `marimo edit app_name.py`.
- _Save_ by clicking the save icon on the bottom right, or by
inputting `Ctrl/Cmd+s`. By default marimo is configured
to autosave.
"""
),
"Running": (
"""
1. _Run a cell_ by clicking the play ( ▷ ) button on the top
right of a cell, or by inputting `Ctrl/Cmd+Enter`.
2. _Run a stale cell_ by clicking the yellow run button on the
right of the cell, or by inputting `Ctrl/Cmd+Enter`. A cell is
stale when its code has been modified but not run.
3. _Run all stale cells_ by clicking the play ( ▷ ) button on
the bottom right of the screen, or input `Ctrl/Cmd+Shift+r`.
"""
),
"Console Output": (
"""
Console output (e.g., `print()` statements) is shown below a
cell.
"""
),
"Creating, Moving, and Deleting Cells": (
"""
1. _Create_ a new cell above or below a given one by clicking
the plus button to the left of the cell, which appears on
mouse hover.
2. _Move_ a cell up or down by dragging on the handle to the
right of the cell, which appears on mouse hover.
3. _Delete_ a cell by clicking the trash bin icon. Bring it
back by clicking the undo button on the bottom right of the
screen, or with `Ctrl/Cmd+Shift+z`.
"""
),
"Disabling Automatic Execution": (
"""
Via the notebook settings (gear icon) or footer panel, you
can disable automatic execution. This is helpful when
working with expensive notebooks or notebooks that have
side-effects like database transactions.
"""
),
"Disabling Cells": (
"""
You can disable a cell via the cell context menu.
marimo will never run a disabled cell or any cells that depend on it.
This can help prevent accidental execution of expensive computations
when editing a notebook.
"""
),
"Code Folding": (
"""
You can collapse or fold the code in a cell by clicking the arrow
icons in the line number column to the left, or by using keyboard
shortcuts.
Use the command palette (`Ctrl/Cmd+k`) or a keyboard shortcut to
quickly fold or unfold all cells.
"""
),
"Code Formatting": (
"""
If you have [ruff](https://github.com/astral-sh/ruff) installed,
you can format a cell with the keyboard shortcut `Ctrl/Cmd+b`.
"""
),
"Command Palette": (
"""
Use `Ctrl/Cmd+k` to open the command palette.
"""
),
"Keyboard Shortcuts": (
"""
Open the notebook menu (top-right) or input `Ctrl/Cmd+Shift+h` to
view a list of all keyboard shortcuts.
"""
),
"Configuration": (
"""
Configure the editor by clicking the gears icon near the top-right
of the screen.
"""
),
}
return (tips,)
if __name__ == "__main__":
app.run()
|