File size: 7,534 Bytes
412bf95
 
a5f640f
412bf95
 
 
 
a5f640f
412bf95
8fa82fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412bf95
 
 
 
8fa82fa
 
 
 
 
412bf95
 
 
8fa82fa
 
 
 
412bf95
 
 
8fa82fa
 
412bf95
8fa82fa
 
 
 
 
412bf95
 
8fa82fa
 
 
 
412bf95
 
 
8fa82fa
 
 
 
 
 
 
 
 
 
412bf95
8fa82fa
 
412bf95
8fa82fa
 
412bf95
8fa82fa
 
412bf95
8fa82fa
 
 
 
412bf95
 
8fa82fa
 
 
 
 
 
412bf95
 
 
8fa82fa
 
 
412bf95
8fa82fa
 
 
 
 
 
 
412bf95
 
8fa82fa
 
 
 
 
 
 
 
 
 
 
 
 
412bf95
 
 
 
8fa82fa
 
 
 
 
 
 
 
 
 
412bf95
 
 
 
8fa82fa
 
 
 
412bf95
 
 
8fa82fa
 
 
 
 
 
412bf95
 
 
8fa82fa
 
 
 
 
 
 
 
 
 
 
412bf95
 
 
a5f640f
412bf95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import marimo

__generated_with = "0.10.16"
app = marimo.App()


@app.cell
def _():
    import marimo as mo
    import polars as pl
    from sklearn import datasets
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

    mo.md("# Iris Dataset Showcase")
    return (
        DecisionTreeClassifier,
        accuracy_score,
        classification_report,
        confusion_matrix,
        datasets,
        mo,
        pl,
        train_test_split,
    )


@app.cell(hide_code=True)
def _(datasets):
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    return X, iris, y


@app.cell(hide_code=True)
def _(X, train_test_split, y):
    # Split the dataset into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    return X_test, X_train, y_test, y_train


@app.cell
def _(DecisionTreeClassifier, X_train, mo, y_train):
    classifier = DecisionTreeClassifier()

    classifier.fit(X_train, y_train)
    mo.md(f"""
        ## Decision Tree Classifier
    """)
    return (classifier,)


@app.cell
def _(X_test, classifier):
    y_pred = classifier.predict(X_test)
    return (y_pred,)


@app.cell
def _(
    accuracy_score,
    classification_report,
    confusion_matrix,
    mo,
    y_pred,
    y_test,
):
    # Calculate accuracy
    accuracy = accuracy_score(y_test, y_pred)

    # Confusion matrix
    conf_matrix = confusion_matrix(y_test, y_pred)

    # Classification report
    class_report = classification_report(y_test, y_pred)

    mo.md(f"""
        Accuracy: {accuracy}

        Confusion Matrix:
    ```
        {conf_matrix}
    ```


        Classification Report:
    ```
        {class_report}
    ```
    """)
    return accuracy, class_report, conf_matrix


@app.cell
def _(X_test, pl, y_pred, y_test):
    import seaborn as sns
    import matplotlib.pyplot as plt

    df = pl.DataFrame({
        "sepal length (cm)": X_test[:, 0],
        "sepal width (cm)": X_test[:, 1],
        "Predicted": y_pred,
        "Actual": y_test
    })
    return df, plt, sns


@app.cell
def _(df, mo, plt, sns):
    plt.figure(figsize=(10, 6))
    sns.scatterplot(data=df, x='sepal length (cm)', y='sepal width (cm)', hue='Predicted', style='Actual', palette='Set1', markers=['o', 's', 'D'])
    plt.title('Iris Dataset: Sepal Length vs Sepal Width')
    plt.xlabel('Sepal Length (cm)')
    plt.ylabel('Sepal Width (cm)')
    plt.legend(title='Class')
    mo.vstack(
        [
            mo.md("## Iris Dataset"),
            plt.gcf()
        ]
    )
    return


@app.cell
def _(conf_matrix, iris, mo, plt, sns):
    plt.figure(figsize=(8, 6))
    sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=iris.target_names, yticklabels=iris.target_names)
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    mo.vstack([
        mo.md("## Confusion Matrix"),
        plt.gcf()
    ])
    return


@app.cell(hide_code=True)
def _(iris, pl):
    iris_df = pl.DataFrame(data=iris.data, schema=iris.feature_names)
    iris_df = iris_df.with_columns(pl.Series("species", iris.target))
    return (iris_df,)


@app.cell
def _(iris_df, mo, plt, sns):
    sns.pairplot(iris_df.to_pandas(), hue='species', palette='Set1', markers=["o", "s", "D"])
    mo.vstack([
        mo.md("## Pair Plot"),
        plt.gcf()
    ])
    return


@app.cell
def _(classifier, iris, mo, plt):
    from sklearn.tree import plot_tree

    plt.figure(figsize=(12, 8))
    plot_tree(classifier, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
    mo.vstack([
        mo.md("## Classifier Decision Tree Visualization"),
        plt.gcf()
    ])
    return (plot_tree,)


@app.cell(hide_code=True)
def _():
    tips = {
        "Saving": (
            """
            **Saving**

            - _Name_ your app using the box at the top of the screen, or
              with `Ctrl/Cmd+s`. You can also create a named app at the
              command line, e.g., `marimo edit app_name.py`.

            - _Save_ by clicking the save icon on the bottom right, or by
              inputting `Ctrl/Cmd+s`. By default marimo is configured
              to autosave.
            """
        ),
        "Running": (
            """
            1. _Run a cell_ by clicking the play ( ▷ ) button on the top
            right of a cell, or by inputting `Ctrl/Cmd+Enter`.

            2. _Run a stale cell_  by clicking the yellow run button on the
            right of the cell, or by inputting `Ctrl/Cmd+Enter`. A cell is
            stale when its code has been modified but not run.

            3. _Run all stale cells_ by clicking the play ( ▷ ) button on
            the bottom right of the screen, or input `Ctrl/Cmd+Shift+r`.
            """
        ),
        "Console Output": (
            """
            Console output (e.g., `print()` statements) is shown below a
            cell.
            """
        ),
        "Creating, Moving, and Deleting Cells": (
            """
            1. _Create_ a new cell above or below a given one by clicking
                the plus button to the left of the cell, which appears on
                mouse hover.

            2. _Move_ a cell up or down by dragging on the handle to the 
                right of the cell, which appears on mouse hover.

            3. _Delete_ a cell by clicking the trash bin icon. Bring it
                back by clicking the undo button on the bottom right of the
                screen, or with `Ctrl/Cmd+Shift+z`.
            """
        ),
        "Disabling Automatic Execution": (
            """
            Via the notebook settings (gear icon) or footer panel, you
            can disable automatic execution. This is helpful when
            working with expensive notebooks or notebooks that have
            side-effects like database transactions.
            """
        ),
        "Disabling Cells": (
            """
            You can disable a cell via the cell context menu.
            marimo will never run a disabled cell or any cells that depend on it.
            This can help prevent accidental execution of expensive computations
            when editing a notebook.
            """
        ),
        "Code Folding": (
            """
            You can collapse or fold the code in a cell by clicking the arrow
            icons in the line number column to the left, or by using keyboard
            shortcuts.

            Use the command palette (`Ctrl/Cmd+k`) or a keyboard shortcut to
            quickly fold or unfold all cells.
            """
        ),
        "Code Formatting": (
            """
            If you have [ruff](https://github.com/astral-sh/ruff) installed,
            you can format a cell with the keyboard shortcut `Ctrl/Cmd+b`.
            """
        ),
        "Command Palette": (
            """
            Use `Ctrl/Cmd+k` to open the command palette.
            """
        ),
        "Keyboard Shortcuts": (
            """
            Open the notebook menu (top-right) or input `Ctrl/Cmd+Shift+h` to
            view a list of all keyboard shortcuts.
            """
        ),
        "Configuration": (
            """
           Configure the editor by clicking the gears icon near the top-right
           of the screen.
           """
        ),
    }
    return (tips,)


if __name__ == "__main__":
    app.run()