Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
-
import
|
2 |
-
import openai
|
3 |
import json
|
4 |
-
from annotated_text import annotated_text
|
5 |
import os
|
6 |
-
import
|
7 |
-
|
8 |
|
9 |
# OpenAI API 설정 (환경 변수에서 읽어옴)
|
10 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
11 |
|
12 |
-
#gpt이용해서 추론함수 만들기
|
13 |
def generate_annotated_text(text):
|
14 |
response = openai.ChatCompletion.create(
|
15 |
model="gpt-3.5-turbo-16k",
|
@@ -53,61 +51,60 @@ def generate_similar_sentences(base_sentence):
|
|
53 |
)
|
54 |
generated_sentences = response.choices[0].message['content'].split('\n')
|
55 |
return [sentence.strip() for sentence in generated_sentences if sentence.strip()]
|
56 |
-
|
57 |
-
|
58 |
-
# Streamlit 앱의 제목 및 설명
|
59 |
-
st.title("성취기준 기반 학생의 특성 및 활동 평가 생성")
|
60 |
-
st.write("성취기준을 입력하시면, 해당 성취기준에 기반한 학생의 특성 및 활동에 대한 평가를 \n\n [학생 활동, 성취 수준, 교사의 총평, 학생 역량] 4가지 요소를 조합하여 제공합니다.")
|
61 |
|
62 |
# 성취기준 데이터 가져오기
|
|
|
63 |
achievement_standards = data.achievement_standards
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
# 선택된 학년군에 따른 과목 목록
|
69 |
-
subject_list = list(achievement_standards[grade_group].keys())
|
70 |
-
subject = st.selectbox("과목을 선택하세요:", subject_list)
|
71 |
-
|
72 |
-
# 선택된 과목에 따른 성취기준 목록
|
73 |
-
selected_standards = achievement_standards[grade_group][subject]
|
74 |
-
selected_standard = st.selectbox("성취기준을 선택하세요:", selected_standards)
|
75 |
-
|
76 |
-
# 선택된 성취기준을 텍스트 입력창의 기본값으로 사용
|
77 |
-
achievement_standard = st.text_input("성취기준 입력:", value=selected_standard)
|
78 |
-
|
79 |
-
# 세션 상태 초기화
|
80 |
-
if 'generated_result' not in st.session_state:
|
81 |
-
st.session_state.generated_result = None
|
82 |
-
if 'selected_sentence' not in st.session_state:
|
83 |
-
st.session_state.selected_sentence = None
|
84 |
-
if 'similar_sentences' not in st.session_state:
|
85 |
-
st.session_state.similar_sentences = []
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
with st.spinner('답변 생성중...'):
|
90 |
-
result = generate_annotated_text(achievement_standard)
|
91 |
-
st.session_state.generated_result = result
|
92 |
-
st.session_state.selected_sentence = None # 새로운 평가 생성시 선택된 문장 초기화
|
93 |
-
st.session_state.similar_sentences = [] # 이전 유사한 문장들 초기화
|
94 |
-
exec(result.replace('```', ''))
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
result_lines = st.session_state.generated_result.split('\n')
|
100 |
sentences = [line[start_idx + 2:line.find('",', start_idx)].strip() for line in result_lines if (start_idx := line.find('("')) != -1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import openai
|
3 |
import json
|
|
|
4 |
import os
|
5 |
+
import pandas as pd
|
|
|
6 |
|
7 |
# OpenAI API 설정 (환경 변수에서 읽어옴)
|
8 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
9 |
|
10 |
+
# gpt이용해서 추론함수 만들기
|
11 |
def generate_annotated_text(text):
|
12 |
response = openai.ChatCompletion.create(
|
13 |
model="gpt-3.5-turbo-16k",
|
|
|
51 |
)
|
52 |
generated_sentences = response.choices[0].message['content'].split('\n')
|
53 |
return [sentence.strip() for sentence in generated_sentences if sentence.strip()]
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
# 성취기준 데이터 가져오기
|
56 |
+
import achievement_standards as data
|
57 |
achievement_standards = data.achievement_standards
|
58 |
|
59 |
+
def get_subjects(grade_group):
|
60 |
+
return list(achievement_standards[grade_group].keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def get_standards(grade_group, subject):
|
63 |
+
return achievement_standards[grade_group][subject]
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
def generate_and_save_evaluation(grade_group, subject, standard):
|
66 |
+
result = generate_annotated_text(standard)
|
67 |
+
result_lines = result.split('\n')
|
|
|
68 |
sentences = [line[start_idx + 2:line.find('",', start_idx)].strip() for line in result_lines if (start_idx := line.find('("')) != -1]
|
69 |
+
df = pd.DataFrame(sentences, columns=["Evaluation"])
|
70 |
+
file_path = "/mnt/data/evaluations.csv"
|
71 |
+
df.to_csv(file_path, index=False)
|
72 |
+
return result, file_path
|
73 |
+
|
74 |
+
# Gradio 인터페이스 정의
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
gr.Markdown("### 성취기준 기반 학생의 특성 및 활동 평가 생성")
|
77 |
+
|
78 |
+
grade_group = gr.Dropdown(label="학년군을 선택하세요:", choices=list(achievement_standards.keys()))
|
79 |
+
subject = gr.Dropdown(label="과목을 선택하세요:")
|
80 |
+
standard = gr.Dropdown(label="성취기준을 선택하세요:")
|
81 |
+
|
82 |
+
grade_group.change(fn=get_subjects, inputs=grade_group, outputs=subject)
|
83 |
+
subject.change(fn=get_standards, inputs=[grade_group, subject], outputs=standard)
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
generate_button = gr.Button("평가 생성")
|
87 |
+
result_output = gr.HTML()
|
88 |
|
89 |
+
similar_sentence_button = gr.Button("유사한 문구 생성")
|
90 |
+
similar_sentences_output = gr.HTML()
|
91 |
+
save_button = gr.Button("CSV로 저장")
|
92 |
+
download_link = gr.File()
|
93 |
+
|
94 |
+
def update_similar_sentences(selected_sentence):
|
95 |
+
similar_sentences = generate_similar_sentences(selected_sentence)
|
96 |
+
return '<br>'.join(similar_sentences)
|
97 |
|
98 |
+
def save_evaluations_to_csv(evaluations):
|
99 |
+
df = pd.DataFrame(evaluations, columns=["Evaluation"])
|
100 |
+
file_path = "/mnt/data/evaluations.csv"
|
101 |
+
df.to_csv(file_path, index=False)
|
102 |
+
return file_path
|
103 |
|
104 |
+
selected_sentence = gr.Textbox(visible=False)
|
105 |
+
|
106 |
+
generate_button.click(fn=generate_and_save_evaluation, inputs=[grade_group, subject, standard], outputs=[result_output, download_link])
|
107 |
+
similar_sentence_button.click(fn=update_similar_sentences, inputs=selected_sentence, outputs=similar_sentences_output)
|
108 |
+
save_button.click(fn=save_evaluations_to_csv, inputs=result_output, outputs=download_link)
|
109 |
+
|
110 |
+
demo.launch()
|